Oxford Cambridge and RSA

GCE

Chemistry B (Salters)

H033/01: Foundations of chemistry
Advanced Subsidiary GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Section A

Question	Key	AO element
1	A	$\mathbf{2 . 1}$
2	B	$\mathbf{1 . 1}$
3	D	$\mathbf{2 . 5}$
4	B	$\mathbf{2 . 7}$
5	D	$\mathbf{1 . 2}$
6	A	$\mathbf{1 . 2}$
7	B	$\mathbf{1 . 2}$
8	A	$\mathbf{1 . 2}$
9	C	$\mathbf{1 . 2}$
10	D	$\mathbf{2 . 6}$
11	C	$\mathbf{1 . 1}$
12	D	$\mathbf{1 . 1}$
13	B	$\mathbf{1 . 2}$
14	A	$\mathbf{2 . 5}$
15	C	$\mathbf{1 . 2}$
16	D	$\mathbf{2 . 1}$
17	C	$\mathbf{2 . 1}$
18	B	$\mathbf{1 . 2}$
19	C	$\mathbf{1 . 1}$
20	A	$\mathbf{2 . 5}$

Section B

Question			Answer	Mark	AO	Guidance
21	(a)		$-46 \mathrm{~kJ} \mathrm{~mol}^{-1} \checkmark$	1	1.1	Units and sign required
21	(b)		rates are equal / rates are the same \checkmark	1	1.1	
21	(c)	(i)	 pressure labelled on x-axis \checkmark linear scales (filling at least $1 / 2$ of grid in both directions) \checkmark plot and lines of best fit \checkmark	3	2.6	Units not required. Y-axis does not require label but if present must be "yield" or "(eqm) \%" y-axis scale should not extend beyond 100\% ALLOW point to point or a curve which misses one point. labels/key not required but if present must be correct Line can extend to 0:0 or beyond 1000 atm
21	(c)	(ii)	no difference \checkmark Catalysts do not affect yield/equilibrium (position) AW \checkmark	2	2.6	ALLOW Catalysts only/just affect rate OR Catalysts only/just affect the speed at which equilibrium is attained but IGNORE any other reference to rates
21	(c)	(iii)	more moles/molecules of reactants/left (ora) \checkmark	1	1.2	ALLOW 4 moles/molecules gives 2
21	(c)	(iv)	Two from $\checkmark \checkmark$	2	3.2	

Question		Answer	Mark	AO	Guidance
		- Yield cannot increase much/ is already nearly 100% - (Increasing pressure) is unsafe (AW)/expensive (AW)/uses more energy (AW) - (Increasing pressure means) equilibrium will be reached sooner		2.1	ALLOW Correct .(AW) \checkmark If linked to one of first two bullet points OR Incorrect (AW) \checkmark If linked to the third bullet point
(c)	(v)	Molecules/particles move faster/have more energy \checkmark More (frequent) collisions with energy greater than activation enthalpy/Ea \checkmark	2	1.2	"Atoms" CON first marking point ALLOW more successful collisions \checkmark
(d)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.0869$ award $\mathbf{2}$ marks $\begin{aligned} & K_{\mathrm{c}}=\left[\mathrm{NH}_{3}\right]^{2} /\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3} \\ & \left(=0.00271^{2} / 0.04030 .128^{3}\right)=0.0869 \checkmark \end{aligned}$	2	2.6	IGNORE units (not required at AS) DO NOT ALLOW ecf from wrong equation for K_{c} 1 mark is scored by a correct equation for K_{c} but an incorrect calculation.

Question			Answer	Mark	AO	Guidance
22	(a)		It would react with $\mathrm{BaO} / \mathrm{BaO}_{2} \checkmark$	1	2.5	ALLOW BaCO_{3} would form
	(b)	(i)	BaCO_{3} has higher (thermal) stability AW/ora Barium ion is larger ora \checkmark Barium (ion) has smaller charge density ora / Both ions have the same/+2 charge \checkmark carbonate ion distorted/polarised less (by barium ion)ora \checkmark	4	1.2	NOTE " Ba^{2+} is bigger than $\mathrm{Ca}^{2+\eta}$ scores $2^{\text {nd }}$ and $3^{\text {rd }}$ marking points
	(b)	(ii)	Both (barium and calcium) are in same group/ same charge/2+ on ions	1	1.1	
	(c)	(i)	$\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	2.5	IGNORE state symbols
	(c)	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.0566 / 0.057\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ award 2 marks amount $\mathrm{HCl}=0.12 \times 23.6 / 1000$ OR 2.83(2) $\times 10^{-3} \mathrm{~mol} \checkmark$ concentration $\mathrm{Ba}(\mathrm{OH})_{2}=($ ans to first mark $\times 1000 / 25 \div 2$) $=0.0566 / 0.057\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \downarrow$	2	2.8	ALLOW two or more sf. ALLOW ecf from (c)(i), i.e. incorrectly balanced equation 0.114 or 0.113 scores 1 mark unless correctly scored by ecf from c(i)
		(iii)	$(0.0566 \times 171.3=) 9.70\left(\mathrm{~g} \mathrm{dm}^{-3}\right)^{\checkmark}$	1	2.8	ALLOW two or more sf. ALLOW ecf from c(ii) ALLOW 9.76 (Concentration rounded to 0.057) ALLOW 9.68 or 9.75 (Mr 171 used)

Question			Answer	Mark	AO	Guidance
23	(a)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $25\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 3 marks Energy absorbed $=200 \times 4.18 \times 3=2.508(\mathrm{~kJ}) \checkmark$ $2.508 \times 80 / 8=25$ (to any sf) $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right) \checkmark$ 2 sf \checkmark	3	2.4	ALLOW ecf ALLOW use of 208 for mass of water (gives 26) Award third mark separately for any calculated answer to 2 sf
23	(a)	(ii)	Greater mass/moles (of nitrate) (in same volume of water) is correct (AW). AND more water is incorrect. AW \checkmark Greater volume (with same mass of nitrate) would decrease temperature change AW \checkmark	2	3.3	ALLOW mathematical treatment stating effect of changed mass/moles (of nitrate) AND changed volume (of water) on ΔT NOTE second marking point subsumes part of first marking point
23	(b)	(i)	Weigh out $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} /$ copper sulfate \checkmark Dissolve to make 0.2 moldm $^{-3}$ solution \checkmark Put $100 \mathrm{~cm}^{3}$ (of solution) into a suitable vessel (e.g insulated cup) and measure temperature \checkmark (Weigh) less than $1.3 \mathrm{~g} / 0.02 \mathrm{~mol}$ of Zn (powder) \checkmark Add (zinc powder), (stir) and measure highest temperature reached \checkmark	5	3.3 3.3 1.2 3.4 1.2	ALLOW for first two marking points any method that produces a 0.2 M solution NOTE Dissolve 5 g of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} /$ copper sulfate in $100 \mathrm{~cm}^{3}$ (of water) gains first two marking points If $100 \mathrm{~cm}^{3}$ is mentioned as above it is not required here ALLOW ecf based on incorrect molarity of copper sulfate solution but not volume

Question			Answer	Mark	AO	Guidance
23	(b)	(ii)	 line plotted and extrapolated back to 3 minutes value read off at $3 \mathrm{mins}=24.5$, so rise is $9.5\left({ }^{\circ} \mathrm{C}\right) \checkmark$	2	3.3	Must be some evidence of extrapolation on graph for first marking point (e.g. a cross at 3mins/24.5C) ALLOW 9.25 to 9.75 " 8 " gains 1 mark (peak T minus starting T)

Question			Answer	Mark	AO	Guidance
24	(a)		phenol \checkmark (primary) alcohol \checkmark	2	1.1	
24	(b)		(conc sulfuric) acid $/ \mathrm{H}^{+} /$acidified AND (potassium/sodium) dichromate(VI)/ dichromate \checkmark Heat/reflux \checkmark	2	1.2	ALLOW formulae but ignore if correct names given. ALLOW minor spelling mistakes ALLOW specified temperature between 60 and 100C ALLOW high temperature ALLOW warm
24	(c)	(i)	dissolve in hot/warm water/solvent minimum volume	2	1.2	
24	(c)	(ii)	melting point is higher/ has smaller range/ more defined \checkmark	1	1.2	ALLOW melting point is closer to text book/reference value IGNORE references to TLC
24	(d)		No reaction with sodium carbonate - phenols (and alcohols) do not react with carbonates \checkmark will not dehydrate/make a double bond \checkmark because there is no H on the carbon adjacent to the carbon with the OH group \checkmark	3	3.2	DO NOT ALLOW ecf from (a) ALLOW " 2 nd statement is incorrect" for $2^{\text {nd }}$ marking point.
24	(e)	(i)		1	2.3	ALLOW any correct formula including $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{OCl}$
24	(e)	(ii)		1	2.3	Must be skeletal ALLOW O-H

| Question | | Answer | Mark | AO
 element | Guidance |
| :---: | :---: | :--- | :--- | :---: | :---: | :---: |
| $\mathbf{2 4}$ | (f) | Both form hydrogen bonds because of OH
 groups/hydroxyl/O bonded to H \checkmark
 salicyl alcohol has more (hydrogen bonds/OH) so has
 stronger intermolecular bonds/forces \checkmark | $\mathbf{2}$ | $\mathbf{2 . 1}$ | |
| ALLOW salicyl alcohol has more (hydrogen
 bonds/OH) so more energy is needed to overcome
 them - for second marking point | | | | | |

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

