

Mark Scheme (Results)

October 2020

Pearson Edexcel GCE In Chemistry (9CH0) Paper 2: Advanced Organic and Physical Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020 Publications Code 9CH0_02_ 2010_MS All the material in this publication is copyright © Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer. Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Additional Guidance	Mark
1(a)	 all bonding pairs of electrons correct (1) 2 lone pairs of electrons on oxygen (1) 	Example of diagram H	(2)

Question Number	Answer	Additional Guidance	Mark
1(b)		Allow this shown on diagram in (a)	(1)
	• 0-H	Allow OH	
		Do not award –O–H	

Question Number	Answer	Additional Guidance	Mark
1(c)(i)			(1)
	hydrogen bonding		

Question Number	Answer	Additional Guidance	Mark
1(c)(ii)		Examples of diagrams $H = \frac{H}{C} = \frac{3}{2} = \frac{3}{2} = \frac{3}{2} = \frac{4}{3} = \frac{3}{2} = \frac{4}{3} = \frac{3}{2} = \frac{4}{3} = \frac{3}{2} $	(3)
	 at least one lone pair shown on the oxygen atom in water or methanol and involved in the hydrogen bond (1) 	$H = C = Q = H^{S+}$ $H = H^{S+}$ H^{S+} H^{S+} H^{S+}	
	 hydrogen bond shown between an H in one molecule and an O on the other molecule and O-HO / OH-O bond angle at (about) 180° (1) 	Any bond angle labelled as 180° must be between the correct bonds 180° must be drawn at about 180°, not just labelled Ignore all other bond angles	
	 at least one δ+ shown on either H atom in water or attached to O in methanol and at least one δ- shown on any O atom (1) 	Only 1 correct dipole needs to be shown No TE on c(i) If 2 hydrogen bonds shown, 1 with correct bond angle and 1 incorrect, do not award M2	

(Total for Question 1 = 7 marks)

Question number	Ans	swer	Mark
2(a)	Th€	e only correct answer is C	(1)
	A	is incorrect because this has molecular formula C_6H_{12}	
	В	is incorrect because this has molecular formula C_6H_8	
	D	is incorrect because this has molecular formula C_6H_8	

Question number	Answer	Mark
2(b)	The only correct answer is C (2,3-dimethylbut-1-ene)	(1)
	A is incorrect because the longest chain has 4 carbon atoms	
	B is incorrect because the longest chain has 4 carbon atoms	
	D is incorrect because the C=C should have the lowest number	

Question Number	Answer		Additional Guidance			Mark
2(c)		Ex	Example of table			(3)
			Reaction	Reagent and condition	Product	
			1	(HBr at room temperature)	H H HCBr H H	
			2	steam / H₂O(g) and acid / H⁺	$\begin{pmatrix} H & H \\ & \\ H - C - C - OH \\ & \\ H & H \end{pmatrix}$	
	• product in Reaction 1 (1)			al / skeletal / mo promoethane	lecular formula /	
	• reagent in Reaction 2 (1)	All	low water /	H ₂ O and heat inst	tead of steam	
	• condition in Reaction 2 (1)	ac Igr Do	id / sulfuric nore any spe not award a	acid cific temperature	any reagent other	

Question Number	Answer	Additional Guidance	Mark
2(d)(i)	2 repeat units with extension bonds	$ \begin{array}{c c} \underline{\text{Example of two repeat units}} \\ \hline H & H & H & H \\ \hline - & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - & - \\ \hline & - & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & - & - & - & - \\ \hline & - & $	(1)
		The extension bonds can be solid / dotted / dashed Allow C ₂ H ₅ for the side chains	
		Allow ethyl groups on carbon atoms: 1 and 3, 2 and 4, 1 and 4 or 2 and 3	
		Allow skeletal formula / any combination of structural or displayed formulae	
		Ignore brackets / n Ignore connectivity of vertical CH ₂ CH ₃ groups	

Question Number	Answer		Additional Guidance	Mark
2(d)(ii)	calculation of moles of but-1-ene	(1)	Example of calculation moles of but-1-ene = $\frac{70.0}{56.0}$ = 1.25 (mol)	(2)
	 calculation of number of molecules of but-1-ene 	(1)	molecules of but-1-ene = 1.25 x 6.02 x10 ²³ = 7.525 x 10 ²³	
			TE on moles but-1-ene Ignore SF except 1 SF Do not award M2 for mass x 6.02 x10 ²³	
			Correct answer with no working scores (2)	

(Total for Question 2 = 8 marks)

Question Number	Answer	Additional Guidance	Mark
3(a)(i)	An explanation that makes reference to the following points:		(2)
	 oxidation numbers of Br identified as (+)5 for BrO₃⁻, -1 for Br⁻ and 0 for Br₂ (1) 	These may be shown in the equation Allow 5+ / V / 1- / -I Do not award any change in oxidation numbers of oxygen and or hydrogen	
	 this is not disproportionation because: two different species of bromine / reactants are oxidised and reduced / not one species oxidised and reduced or only one species containing bromine is produced / two different species containing bromine in two different oxidation states are not produced 	Allow bromine is oxidised and reduced in the reverse reaction Allow this is reverse disproportionation / comproportionation	

Question number	Ans	wer	Mark
3(a)(ii)	The	e only correct answer is D (cannot tell from this information)	(1)
	A	is incorrect because there are 3 reactant species but the overall order of a reaction can only be determined by experiment	
	В	is incorrect because there is 1 bromate ion and 5 bromide ions but the overall order of a reaction can only be determined by experiment	
	С	is incorrect because there are 12 reactant particles but the overall order of a reaction can only be determined by experiment	

Question Number	Answer	Additional Guidance	Mark
3(b)	• calculation of moles of KBrO ₃ (1)	$\frac{\text{Example of calculation}}{\text{moles of KBrO}_3} = \frac{5.20}{(39.1 + 79.9 + (3 \times 16.0))} = \frac{5.20}{167(.0)}$ $= 0.031138 / 3.1138 \times 10^{-2} \text{ (mol)}$	(3)
	• calculation of moles of O ₂ (1)	moles of $O_2 = \frac{0.031138 \times 3}{2}$ = 0.046707 / 4.6707 x 10 ⁻² (mol) TE on moles of KBrO ₃	
	• calculation of volume of O ₂ (1)	volume of $O_2 = 0.046707 \times 24$ = 1.12096 (dm ³) TE on moles of O_2 Do not award incorrect unit e.g. dm ⁻³ Correct answer with no working scores (3) Ignore SF except 1 SF Ignore use of $pV = nRT$	
L		(Total for Question 3 = 6	marks)

Question number	Answer	Mark
4(a)(i)	The only correct answer is B (Compound Q)	(1)
	A is incorrect because this is not hydrolysed	
	<i>C</i> is incorrect because this is hydrolysed to form phenol and ethanoic acid	
	D is incorrect because this is not hydrolysed	

Question number	Answer	Mark
4(a)(ii)	The only correct answer is A (Compound P)	
	<i>B</i> is incorrect because it is an ester and does not react with sodium hydrogencarbonate	
	<i>C</i> is incorrect because it is an ester and does not react with sodium hydrogencarbonate	
	D is incorrect because it is not acidic enough to react with sodium hydrogencarbonate	

Question Number	Answer		Additional Guidance	Mark
4(b)	Structures:		Examples of structures Ignore names, even if incorrect	(6)
	• T: structure of butan-2-ol	(1)	T: CH ₃ CH ₂ CHOHCH ₃ Ignore connectivity of OH group in displayed formula	
	• U: structure of butanone	(1)	U: CH ₃ CH ₂ COCH ₃	
	• V: structure of 1-methylpropyl ethanoate	(1)	V: H = C + H + H + H + H + H + H + H + H + H +	
	Justification:			
	 U is a ketone because it gives an orange precipitate v 2,4-dinitrophenylhydrazine and does not give a precipitate with Fehling's solution 	with (1)	Allow U is a carbonyl compound because it gives an orange precipitate with 2,4-dinitrophenylhydrazine and is not an aldehyde as it does not give a	
	 T is a secondary alcohol because it was oxidised to / formed a ketone 	(1)	precipitate with Fehling's solution	
	• V is an ester as alcohols react with acyl chlorides / ethanoyl chloride to form esters	(1)	(Total for Question 4 = 8	

(Total for Question 4 = 8 marks)

Question number	Ans	wer	Mark
5(a)	The	e only correct answer is D (C ₆ H ₁₄)	(1)
	A	is incorrect because this has general formula C _n H _n and non-cyclic, saturated hydrocarbons have the general formula C _n H _{2n+2}	
	В	is incorrect because this has general formula CnH2n- 2 and non-cyclic, saturated hydrocarbons have the general formula CnH2n+2	
	С	is incorrect because this has general formula C _n H _{2n} and non-cyclic, saturated hydrocarbons have the general formula C _n H _{2n+2}	

Question number	Answer	Mark
5(b)	The only correct answer is B (3)	
	<i>A</i> is incorrect because the structural isomers of C_5H_{12} are pentane, 2-methylbutane and 2,2-dimethylpropane	
	<i>C</i> is incorrect because the structural isomers of C_5H_{12} are pentane, 2-methylbutane and 2,2-dimethylpropane	
	<i>D</i> is incorrect because the structural isomers of C_5H_{12} are pentane, 2-methylbutane and 2,2-dimethylpropane	

Question number	Answer	Mark
5(c)	The only correct answer is D (16 σ bonds and 1 π bond)	(1)
	A is incorrect because there are 10 σ C-H bonds, 6 C-C σ bonds and 1 C-C π bond	
	B is incorrect because there are 10 σ C-H bonds, 6 C-C σ bonds and 1 C-C π bond	
	C is incorrect because there are 10 σ C-H bonds, 6 C-C σ bonds and 1 C-C π bond	

Question Number	Answer	
5(d)(i)	The only correct answer is A(50 cm³)Bis incorrect because this is the increase in volume from 200 cm³ of ethane	(1)
	<i>C</i> is incorrect because this is the volume of CO ₂ formed	
	<i>D</i> is incorrect because this is the total volume of CO_2 and H_2O formed	

Question number	Answer		Additional Guidance	Mark
5(d)(ii)	calculation of x	(1)	Example of calculation (volume of $CO_2 = 125$ (cm ³) so x = 125/25) = 5	(3)
	calculation of y	(1)	(25 + 25(5 + (y/4)) - 75 = 125) y = 8	
	structure of cyclopentene	(1)		
			Allow the skeletal formula of any cyclic C_5H_8 compound with C=C e.g. a methylcyclobutene TE on x and y for a cyclic hydrocarbon	

Question Number	Answer	Additional Guidance	Mark
5(e)	 dipole on I-CI and correct major product (1) curly arrow from C=C to I and curly arrow from I-CI to, or just beyond, CI (1) intermediate (1) lone pair on CI⁻ and curly arrow from lone pair to C⁺ (1) 	Example of mechanismHCH3HCH3HCH3HCH3HCH3HCH4HCH4CH4HCH4CH4HCH4CH4HCH4CH4H <td>(4)</td>	(4)

Question Number	Answer		Additional Guidance	Mark
5(f)	 calculation of moles of Br₂ 	(1)	$\frac{\text{Example of calculation}}{\text{moles of } Br_2 = \frac{30.6 \text{ x } 0.200}{1000} = 0.00612 / 6.12 \text{ x } 10^{-3}$	(4)
	calculation of moles of limonene	(1)	moles of limonene = $\frac{0.00612}{2}$ = 0.00306 / 3.06 x 10 ⁻³ TE on moles of Br ₂	
	calculation of mass of limonene	(1)	molar mass of limonene = 136 (g mol ⁻¹) and mass of limonene in oil = 0.00306 x 136 = 0.41616 (g) TE on moles of Br_2	
	 calculation of percentage of limonene and answer given to 2 or 3 SF 	(1)	percentage of limonene = $\frac{0.41616}{0.500}$ x 100 (= 83.232(%)) = 83/83.2(%) TE on mass of limonene provided answer is less than 100% with 0.500 as denominator	
			Correct answer with no working scores (4)	

(Total for Question 5 = 15 marks)

Question Number	Answer	Additional Guidance	Mark
6(a)	An answer that makes reference to the following point:(hydroxide ions in ethanol would give an) elimination reaction	Allow an alkene would form Ignore references to solubility in ethanol / ethanol is a (co-)solvent Ignore just 'causes another reaction'	(1)

Question Number	Answer	Additional Guidance	Mark
6(b)		Example of graph	(3)
	• both axes labelled, including units (1)	Allow T / t for time with units Allow just 'concentration' with units Do not award RBr without square brackets	
	 suitable scales and points taking up at least half the graph paper is both directions (1) 		
	 points plotted correctly and 	Do not award point-to-point straight lines	
	smooth curve through the points (1)	

Question Number	Answer	Additional Guidance	Mark
6(C)		Example of working on graph	(2)
	• first half-life 50 s and second half-life 50 s (1)	Allow ± 6 s for both half-lives Do not award M1 if no working is shown on the graph	
	 reaction is first order because the half-lives are (almost) the same (1) 	Allow rate \propto [RBr] / rate = k[RBr] for first order Conditional on 2 half-lives within 12 s or the second half-life is (about) twice the first half-life	

Question Number	Answer	Additional Guidance	Mark
6(d)(i)		Allow x = 0 / rate is proportional to [OH ⁻] ⁰ / rate = <i>k</i> [R-Br][OH ⁻] ⁰	(1)

Question Number	Answer	Additional Guidance	Mark
6(d)(ii)	 curly arrow from R-Br bond to, or just beyond, Br (1) R⁺ and Br⁻ (1) 	$\begin{array}{c} \underline{\text{Example of mechanism}} \\ R & Br & R^+ & R^+ & Br^- \\ R^+ & OH^- & R-OH \end{array}$	(3)
	 Ione pair on O of OH⁻ and curly arrow from Ione pair to R⁺ (1) 	Ignore dipole on RBr	

Question Number	Answer	Additional Guidance	Mark
6(e)	 An explanation that makes reference to the following points: a racemic mixture / racemate is formed or equal amounts / an equimolar mixture of both optical isomers forms (1) intermediate / carbocation is (trigonal) planar around the reaction site / C⁺ / central carbon (1) 	Allow enantiomers / D-L isomers / (+) and (-) isomers Allow the two isomers rotate the plane of plane- polarised light in opposite directions and cancel out Ignore just 'mixture is not optically active' / 'mixture does not rotate the plane of plane- polarised light' Allow the intermediate / carbocation is planar (around the reaction site) Do not award 'the molecule is planar'	(3)
	 (equal probability of) attack (by nucleophile / hydroxide ions) from either side / above and below / both sides / opposite sides (of the plane) (1) 	(Total for Question 6 = 1	

(10tal for Question 6 = 13 marks)

Question Number	Answer	Additional Guidance	Mark
7(a)(i)	An answer that makes reference to the following point:		(1)
	 the hydride ion will not attack / will be repelled by regions of high electron density 	Allow the reduction by LiAlH ₄ is a nucleophilic addition / alkenes do not undergo nucleophilic reactions / H ⁻ is a nucleophile	
		Allow alkenes react with H^{+} / $H^{\delta_{+}}$ / H_{\bullet}	
		Allow the hydride ion will not attack a pi- bond / C=C	
		Allow like charges repel	
		Ignore hydride ions cannot reduce alkenes	
		Ignore hydride ions can only reduce carbonyl compounds	

Question Number	Answer		Additional Guidance	Mark
7(a)(ii)	An answer that makes reference to the following points:		Mark independently	(2)
	 hydrogen / H₂ 	(1)		
	 nickel / Ni or 		Ignore reference to temperature	
	platinum / Pt / palladium / Pd	(1)		

Question Number	Answer	Additional Guidance	Mark
7(a)(iii)	 1-bromobutane / CH₃CH₂CH₂CH₂Br 	If name and formula are given, both must be correct	(1)
		Allow CI or I instead of Br	
		Allow skeletal or displayed formulae	

Question Number	Answer	Additional Guidance	Mark
7(a)(iv)	 hydrochloric acid / HCI / H⁺ 	Allow any (dilute) strong acid Ignore concentration of acid Do not award any weak acid	(1)

Question Number	Answer		Additional Guidance	Mark
7(b)	 Step 1 bromine and iron / iron(III) bromide or chlorine and aluminium chloride Br 	(1)	Allow names or formulae for reagents but if both are given, both must be correct Allow these drawn as a reaction scheme with reagents and conditions on arrows and intermediates in unbalanced equations	(7)
		(1)	The marks for the intermediate structures are stand- alone	
	Step 2 magnesium and dry ether 	(1)		
	MgBr			
	Step 3	(1)		
		1)	Allow carbon dioxide and dilute acid Ignore just carbon dioxide and water	
	ОН			
		(1)		
	Step 4			
	phosphorus(V) chloride / phosphorus pentachloride	(1)	(Total for Ouestion 7 = 12	

(Total for Question 7 = 12 marks)

Question number	Answer	Mark
8(a)(i)	The only correct answer is D (C ₅ H ₈ O ₂)	(1)
	A is incorrect because C_7H_{16} has a molecular ion $m / z = 100.1248$	
	<i>B</i> is incorrect because $C_6H_{12}O$ has a molecular ion $m \neq z = 100.0885$	
	<i>C</i> is incorrect because $C_6H_{14}N$ has a molecular ion $m / z = 100.1123$	

Question Number	Answer	Additional Guidance	Mark
8(a)(ii)	• alkene / C=C (1)	The functional groups can be in any order Ignore just 'double bond'	(2)
	• carboxylic acid / COOH (1)	Ignore just C=O and OH	

Question Number	Answer	Additional Guidance	Mark
8(a)(iii)	 skeletal formula of X 	Example of skeletal formula	(1)
		Ignore bond lengths and bond angles	

Question Number		Acceptable Answ	vers	Additional Guidance	Mark
8(b)*	and logically struct reasoning. Marks are awarded answer is structure The following tabl indicative content Number of indicative marking points seen in answer 6 5-4 3-2 1 0	tured answer with lir d for indicative conte ed and shows lines of le shows how the mar Number of marks awarded for indicative marking points 4 3 2 1 0 ke shows how the mar		Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6)

	Number of marks awarded for structure of answer and sustained line of reasoning	In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and
Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout.	2	3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points would score zero marks for reasoning.
Answer is partially structured with some linkages and lines of reasoning.	1	
Answer has no linkages between points and is unstructured.	0	
Comment: Look for the indicative marking points mark for structure of answer and susta		General points to note
		If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s). e.g. Mention of splitting on the ¹³ C spectra
		Deduct 1 reasoning mark if the similarity in IP1 has not been explicitly mentioned

In	ndicative content	All IP can be shown on clearly labelled diagrams of
•	IP1 - Similarity both ¹ H NMR spectra have a peak (which is a singlet with relative peak area 1) for OH	structures and/or spectra
•	3 peaks for propan-1-ol and 2 peaks for propan-2-ol	Allow carbon environments for peaks Ignore any reference to peak areas
•	 IP4 - ¹H spectra relative peak areas (relative) peak areas 3 : 2 : 2 : 1 for propan-1-ol, 6 : 1 : 1 for propan-2-ol 	Allow 3 : 2 : 2 and 6 : 1 if peak areas for OH given in similarity Allow ratios in any order e.g. 1 : 2 : 2 :3
•	2 triplets, 1 sextet / split into 6 and 1 singlet	Allow hextet for sextet Ignore missing singlet if this has been given in similarity Allow heptet for septet Ignore missing singlet if this has been given in similarity

(Total for Question 8 = 10 marks)

Question Number	Answer	Additional Guidance	Mark
9(a)(i)	 fraction / proportion / number of molecules / particles with energy, E 	Allow fraction / proportion / number of molecules / particles	(1)
		Allow label written on y axis on diagram	

Question Number	Answer	Additional Guidance	Mark
9(a)(ii)	 peak for T₂ to the left of T₁ (1) peak for T₂ higher than T₁ and asymptote lower than T₁ line and not touching the x axis (1) 	Example of diagram	(2)

Question Number	Answer		Additional Guidance	Mark
9(a)(iii)	 An explanation that makes reference to the following points: (at a lower temperature the) molecules / particle collisions have lower (kinetic) energy 	0	Ignore molecules / particles move more slowly	(2)
	 so fewer molecules / particles / collisions have energy greater than (or equal to) the activation 	(1)	Allow fewer molecules / particles have (enough energy to overcome) the activation energy Allow this shown as labelled shading on the diagram Ignore just 'fewer successful collisions'	

Question Number	Answer	Additional Guidance	Mark
9(a)(iv)	• <i>E</i> _{cat} labelled anywhere between the energy corresponding to the highest point of the peak and to the left of <i>E</i> _a	Example of label final Energy, E Energy, E Energ	(1)

-

Question Number	Answer		Additional Guidance	Mark
9(b)	substitution of numbers into expression	(1)	Example of calculation $ \ln \frac{4.87 \times 10^{-3}}{1.50 \times 10^{-3}} = \frac{-E_a}{8.31} \left(\begin{array}{c} 1 \\ 338 \end{array} - \begin{array}{c} 1 \\ 328 \end{array} \right) $	(5)
	 evaluation of k₂/k₁ or ln k₂/k₁ and 1/T₁ -1/T₂ rearrangement of expression 	(1) (1)	$k_2/k_1 = 3.2467$ or ln $k_2/k_1 = 1.1776$ Allow 487/150 for ln k_2/k_1 and $1/T_1 - 1/T_2 = (-)9.0201 \times 10^{-5}$ Allow (-)5/55432 for (-)9.0201 x 10^{-5} e.g. $E_a = \frac{1.1776 \times 8.31}{9.0201 \times 10^{-5}}$	
	 evaluation of expression 	(1)	or $\frac{E_a}{R} = \frac{1.1776}{9.0201 \text{ x } 10^{-5}}$ / = 13056 $E_a = 108 \ 493$ TE on In (k_2/k_1) and $1/T_1 - 1/T_2$	
	 answer given to 2/3 SF and corresponding units 	(1)	 = (+)108 000 / 110 000 J mol⁻¹ or (+)108 / 110 kJ mol⁻¹ Do not award negative value Expression may be rearranged before any evaluation Correct answer to 2/3 SF and units with no working scores (5) 	

(Total for Question 9 = 11 marks) Total for Paper = 90 Marks