Pearson Edexcel

Mark Scheme (Results)

October 2020

Pearson Edexcel GCE
In Chemistry (9CH0)
Paper 2: Advanced Organic and Physical
Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020
Publications Code 9CHO_02_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer		Additional Guidance	Mark
1(a)	- all bonding pairs of electrons correct - 2 lone pairs of electrons on oxygen	(1) (1)	Example of diagram Allow any symbols for electrons, including all dots or all crosses Allow electrons either side of a line for a bond e.g. \underline{x} Electrons can be in overlapping circles, on the lines, inside the lines or in the gaps between the lines Non-bonding electrons on O can be shown as 2 pairs, all 4 together or as 3 and 1 Ignore inner shell electrons	(2)

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 (b)}$ | O-H | Allow this shown on diagram in (a)
 Allow OH
 Do not award $-\mathrm{O}-\mathrm{H}$ |

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 (c) (i)}$ | e hydrogen bonding | (1) |

Question Number	Answer	Additional Guidance	Mark
1(c)(ii)	- at least one lone pair shown on the oxygen atom in water or methanol and involved in the hydrogen bond - hydrogen bond shown between an H in one molecule and an O on the other molecule and $\mathrm{O}-\mathrm{H}--\mathrm{O} / \mathrm{O}--\mathrm{H}-\mathrm{O}$ bond angle at (about) 180° - at least one $\delta+$ shown on either H atom in water or attached to O in methanol and at least one δ - shown on any O atom	Examples of diagrams Any bond angle labelled as 180° must be between the correct bonds 180° must be drawn at about 180°, not just labelled Ignore all other bond angles Only 1 correct dipole needs to be shown No TE on c(i) If 2 hydrogen bonds shown, 1 with correct bond angle and 1 incorrect, do not award M2	(3)

(Total for Question 1 = 7 marks)

Question number	Answer
2(a)	The only correct answer is C
	A is incorrect because this has mol ecular formula $\mathrm{C}_{6} \mathrm{H}_{12}$ B is incorrect because this has mol ecular formula $\mathrm{C}_{6} \mathrm{H}_{8}$ D is incorrect because this has molecular formula $\mathrm{C}_{6} \mathrm{H}_{8}$

Question number	Answer	Mark
2(b)	The only correct answer is C (2, 3-dimethylbut-1-ene)	(1)
	A is incorrect because the longest chain has 4 carbon atoms	
	B is incorrect because the longest chain has 4 carbon atoms	
	D is incorrect because the $\mathrm{C}=\mathrm{C}$ should have the lowest number	

Question Number	Answer		Additional Guidance	Mark
2(d)(ii)	- calculation of moles of but-1-ene - calculation of number of molecules of but-1-ene	(1) (1)	Example of calculation moles of but-1-ene $=\frac{70.0}{56.0}=1.25(\mathrm{~mol})$ molecules of but-1-ene $\begin{aligned} & \quad=1.25 \times 6.02 \times 10^{23} \\ & =7.525 \times 10^{23} \end{aligned}$ TE on moles but-1-ene Ignore SF except 1 SF Do not award M2 for mass $\times 6.02 \times 10^{23}$ Correct answer with no working scores (2)	(2)

Question Number	Answer	Additional Guidance	Mark
3(a)(i)	An explanation that makes reference to the following points: - oxidation numbers of Br identified as $(+1) 5$ for $\mathrm{BrO}_{3}{ }^{-},-1$ for Br^{-} and 0 for Br_{2} - this is not disproportionation because: two different species of bromine / reactants are oxidised and reduced / not one species oxidised and reduced or only one species containing bromine is produced / two different species containing bromine in two different oxidation states are not produced	These may be shown in the equation Allow 5+/ V/ 1- / -I Do not award any change in oxidation numbers of oxygen and or hydrogen Allow bromine is oxidised and reduced in the reverse reaction Allow this is reverse disproportionation / comproportionation	(2)

Question number	Answer	Mark
3(a)(ii)	The only correct answer is D \quad (cannot tell from this information) As incorrect because there are 3 reactant species but the overall order of a reaction can only be determined by experiment is incorrect because there is 1 bromate ion and 5 bromide ions but the overall order of a reaction can only be determined by experiment	
	C is incorrect because there are 12 reactant particles but the overall order of a reaction can only be determined by experiment	

Question Number	Answer		Additional Guidance	Mark
3(b)	- calculation of moles of KBrO_{3} - calculation of moles of O_{2} - calculation of volume of O_{2}	(1) (1) (1)	$\begin{aligned} & \text { Example of calculation } \\ & \begin{array}{l} \text { moles of } \mathrm{KBrO}_{3}=\frac{5.20}{(39.1+79.9+(3 \times 16.0))}=\frac{5.20}{167(.0)} \\ \quad=0.031138 / 3.1138 \times 10^{-2}(\mathrm{~mol}) \end{array} \\ & \text { moles of } \mathrm{O}_{2}=\frac{0.031138 \times 3}{2} \\ & \quad=0.046707 / 4.6707 \times 10^{-2}(\mathrm{~mol}) \end{aligned}$ TE on moles of KBrO_{3} volume of $\mathrm{O}_{2}=0.046707 \times 24$ $=1.12096\left(\mathrm{dm}^{3}\right)$ TE on moles of O_{2} Do not award incorrect unit e.g. dm^{-3} Correct answer with no working scores (3) Ignore SF except 1 SF Ignore use of $\mathrm{pV}=\mathrm{nRT}$	(3)

Question number	Answer	Mark
4(a)(i)	The only correct answer is B (Compound Q)	(1)
	$\mathbf{A} \quad$ is incorrect because this is not hydrolysed	
C is incorrect because this is hydrolysed to form phenol and ethanoic acid		
D is incorrect because this is not hydrolysed		

Question number	Answer	Mark
4(a)(ii)	The only correct answer is A (Compound \mathbf{P})	(1)
	B is incorrect because it is an ester and does not react with sodi um hydrogencarbonate	
	C is incorrect because it is an ester and does not react with sodium hydrogencarbonate	
D is incorrect because it is not acidic enough to react with sodium hydrogencarbonate		

Question Number	Answer	Additional Guidance	Mark
4(b)	Structures: - T: structure of butan-2-ol - U: structure of butanone - \mathbf{V} : structure of 1-methylpropyl ethanoate J ustification: - $\quad \mathbf{U}$ is a ketone because it gives an orange precipitate with 2,4-dinitrophenylhydrazine and does not give a precipitate with Fehling's solution - Tis a secondary alcohol because it was oxidised to / formed a ketone - \mathbf{V} is an ester as alcohols react with acyl chlorides / ethanoyl chloride to form esters	Examples of structures Ignore names, even if incorrect T: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{3}$ Ignore connectivity of OH group in displayed formula U: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$ V: Allow skeletal formulae or any combination of displayed and structural formulae Do not award $\mathrm{C}_{4} \mathrm{H}_{9}$ from al cohol Allow butyl ethanoate if \mathbf{T} is butan-1-ol Allow \mathbf{U} is a carbonyl compound because it gives an orange precipitate with 2,4-dinitrophenylhydrazine and is not an aldehyde as it does not give a precipitate with Fehling's solution	(6)

Question number	Answer	Mark	
$\mathbf{5 (a)}$	The only correct answer is D $\quad\left(\mathrm{C}_{6} H_{14}\right)$ A is incorrect because this has general formula $\mathrm{C}_{n} \mathrm{H}_{n}$ and non-cyclic, saturated hydrocarbons have the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$	(1)	
	B is incorrect because this has general formula $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$ and non-cyclic, saturated hydrocarbons have the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ is incorrect because this has general formula $\mathrm{C}_{n} \mathrm{H}_{2 n}$ and non-cyclic, saturated hydrocarbons have the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$		

Question number	Answer	Mark
5(b)	The only correct answer is B (3) A is incorrect because the structural isomers of $\mathrm{C}_{5} \mathrm{H}_{12}$ are pentane, 2-methylbutane and 2,2-dimethyl propane C is incorrect because the structural isomers of $\mathrm{C}_{5} \mathrm{H}_{12}$ are pentane, 2-methylbutane and 2,2-dimethyl propane D is incorrect because the structural isomers of $\mathrm{C}_{5} \mathrm{H}_{12}$ are pentane, 2-methylbutane and 2,2-dimethylpropane	(1)

Question number	Answer	Mark
5(c)	The only correct answer is $\mathbf{D} \quad(16 \sigma$ bonds and 1π bond)	(1)
	A is incorrect because there are $10 \sigma \mathrm{C}-\mathrm{H}$ bonds, $6 \mathrm{C}-\mathrm{C} \sigma$ bonds and $1 \mathrm{C}-\mathrm{C} \pi$ bond	
	B is incorrect because there are $10 \sigma \mathrm{C}-\mathrm{H}$ bonds, $6 \mathrm{C}-\mathrm{C} \sigma$ bonds and $1 \mathrm{C}-\mathrm{C} \pi$ bond	
C is incorrect because there are $10 \sigma \mathrm{C}-\mathrm{H}$ bonds, $6 \mathrm{C}-\mathrm{C} \sigma$ bonds and $1 \mathrm{C}-\mathrm{C} \pi$ bond		

Question Number	Answer	Mark
5(d)(i)	The only correct answer is A $\quad\left(50 \mathrm{~cm}^{3}\right)$ B is incorrect because this is the increase in volume from $200 \mathrm{~cm}^{3}$ of ethane C is incorrect because this is the volume of CO_{2} formed D \quad is incorrect because this is the total volume of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ formed	(1)

Question number	Answer		Additional Guidance	Mark
5(d)(ii)	- calculation of x - calculation of y - structure of cyclopentene	(1) (1) (1)	Example of calculation (volume of $\mathrm{CO}_{2}=125\left(\mathrm{~cm}^{3}\right)$ so $x=125 / 25)=5$ $\begin{aligned} & (25+25(5+(y / 4))-75=125) \\ & y=8 \end{aligned}$ Allow the skeletal formula of any cyclic $\mathrm{C}_{5} \mathrm{H}_{8}$ compound with $C=C$ e.g. a methylcyclobutene TE on x and y for a cyclic hydrocarbon	(3)

Question Number	Answer	Additional Guidance	Mark
5(e)	- dipole on I-Cl and correct maj or product - curly arrow from $\mathrm{C}=\mathrm{C}$ to I and curly arrow from I-Cl to, or just beyond, Cl - intermediate - Ione pair on Cl^{-} and curly arrow from lone pair to C^{+}	Example of mechanism Do not award $\mathrm{C}^{\delta+}$ on intermediate Allow curly arrow from lone pair to $\mathrm{C}^{\delta+}$ if penalised in M3 Notes If minor product formed, M2, M3 (with I on other carbon atom) and M4 can score If dipole shows $\mathrm{Cl}^{\delta+}$ or no dipole shown and Cl joining first, M2 can score for curly arrow from $\mathrm{C}=\mathrm{C}$ to Cl and curly arrow from $\mathrm{Cl}-\mathrm{I}$ to, or just beyond, I and M4 can score for lone pair on I- and curly arrow from lone pair to C^{+}	(4)

Question Number	Answer		Additional Guidance	Mark
5(f)	- calculation of moles of Br_{2} - calculation of moles of limonene - calculation of mass of limonene - calculation of percentage of limonene and answer given to 2 or 3 SF	(1) (1) (1) (1)	$\begin{aligned} & \text { Example of calculation } \\ & \text { moles of } \mathrm{Br}_{2}=\frac{30.6 \times 0.200}{1000}=0.00612 / 6.12 \times 10^{-3} \\ & \text { moles of limonene }=\frac{0.00612}{2}=0.00306 / 3.06 \times 10^{-3} \\ & \text { TE on moles of } \mathrm{Br}_{2} \\ & \text { molar mass of limonene }=136\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \\ & \text { and } \\ & \text { mass of limonene in oil }=0.00306 \times 136 \\ & \qquad \begin{aligned} & \text { TE on moles of } \mathrm{Br}_{2} \quad \begin{aligned} 0.41616(\mathrm{~g}) \end{aligned} \\ & \begin{aligned} \text { percentage of limonene } & =0.41616 \times 100 \\ & =83.232(\%) \\ & =83 / 83.2(\%) \end{aligned} \end{aligned} \end{aligned}$ TE on mass of limonene provided answer is less than 100\% with 0.500 as denominator Correct answer with no working scores (4)	(4)

(Total for Question 5 = 15 marks)

Question Number	Answer	Additional Guidance	Mark
G(a)	An answer that makes reference to the following point:	Allow an alkene would form	(1)
	- (hydroxide ions in ethanol would give an) elimination reaction	Ignore references to solubility in ethanol / ethanol is a (co-)solvent lgnore just 'causes another reaction'	

Question Number	Answer	Addlitional Guidance	Mark
6(b)	- both axes labelled, including units - suitable scales and points taking up at least half the graph paper in both directions - points plotted correctly and smooth curve through the points	Example of graph Allow T / t for time with units Allow just 'concentration' with units Do not award RBr without square brackets Allow \pm half square Do not award point-to-point straight lines	(3)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{G (d) (i)}$	- zero (orderO / O (order)	Allow $\mathrm{x}=0 /$ rate i i proportional to $\left[\mathrm{OH}^{-}\right]^{\circ} /$ rate $=\mathrm{k}[\mathrm{R}-\mathrm{Br}]\left[\mathrm{OH}^{-}\right]^{\circ}$	(1)

Question Number	Answer	Additional Guidance	Mark
6(d)(ii)	- curly arrow from $\mathrm{R}-\mathrm{Br}$ bond to, or just beyond, Br - R^{+}and Br^{-} - Ione pair on O of OH^{-} and curly arrow from lone pair to R^{+}	Example of mechanism Ignore dipole on RBr	(3)

Question Number	Answer	Additional Guidance	Mark
6(e)	An explanation that makes reference to the following points: - a racemic mixture / racemate is formed or equal amounts / an equimolar mixture of both optical isomers forms - intermediate / carbocation is (trigonal) planar around the reaction site / C^{+}/ central carbon - (equal probability of) attack (by nucleophile / hydroxide ions) from either side / above and below / both sides / opposite sides (of the plane)	Allow enantiomers / D-L isomers / (+) and (-) isomers Allow the two isomers rotate the plane of planepolarised light in opposite directions and cancel out Ignore just 'mixture is not optically active' / 'mixture does not rotate the plane of planepolarised light' Allow the intermediate / carbocation is planar (around the reaction site) Do not award 'the molecule is planar'	(3)

(Total for Question $6=13$ marks)

Question Number	Answer	Additional Guidance	Mark
7(a)(i)	An answer that makes reference to the following point: - the hydride ion will not attack / will be repelled by regions of high electron density	Allow the reduction by LiAlH_{4} is a nucleophilic addition / alkenes do not undergo nucleophilic reactions / H^{-}is a nucleophile Allow alkenes react with $\mathrm{H}^{+} / \mathrm{H}^{\delta+} / \mathrm{H}^{\bullet}$ Allow the hydride ion will not attack a pibond / $\mathrm{C}=\mathrm{C}$ Allow like charges repel Ignore hydride ions cannot reduce alkenes Ignore hydride ions can only reduce carbonyl compounds	(1)

Question Number	Answer	Mdditional Guidance	
7(a)(ii)	An answer that makes reference to the following points:	(2)	
	(1) - hydrogen / H_{2} nickel / Ni platinum / Pt / palladium / Pd	(1)	

Question Number	Answer	Additional Guidance
7(a)(iii)	1-bromobutane / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$	If name and formula are given, both must be correct Allow Cl or I instead of Br Allow skeletal or displayed formulae

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :---: |
| 7(a)(iv) | \bullet hydrochloric acid / HCl/ H ${ }^{+}$ | Allow any (dilute) strong acid
 Ignore concentration of acid
 Do not award any weak acid |

Question Number	Answer	Additional Guidance	Mark
7(b)	Step 1 - bromine and iron / iron(III) bromide or chlorine and aluminium chloride Step 2 - magnesium and dry ether Step 3 - carbon dioxide followed by a dilute acid Step 4 - phosphorus(V) chloride / phosphorus pentachloride	Allow names or formulae for reagents but if both are given, both must be correct Allow these drawn as a reaction scheme with reagents and conditions on arrows and intermediates in unbalanced equations The marks for the intermediate structures are standalone Allow carbon dioxide and dilute acid Ignore just carbon dioxide and water	(7)

Question number	Answer	Mark
$\mathbf{8 (a) (i)}$	The only correct answer is $\mathbf{D} \quad\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right)$	(1)
	A is incorrect because $\mathrm{C}_{7} \mathrm{H}_{16}$ has a molecular ion $\mathrm{m} / \mathrm{z}=100.1248$	
	B is incorrect because $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ has a molecular ion $\mathrm{m} / \mathrm{z}=100.0885$	
C is incorrect because $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}$ has a molecular ion $\mathrm{m} / \mathrm{z}=100.1123$		

Question Number	Answer	Additional Guidance	Mark	
8(a)(ii)	- alkene / $\mathrm{C}=\mathrm{C}$	(1)	The functional groups can be in any order lgnore just 'double bond'	(2)
	- carboxylic acid / COOH	(1)	Ignore just $\mathrm{C}=\mathrm{O}$ and OH	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{8 (a) (\text { (iii) }}$	- skeletal formula of \mathbf{x}		(1)
		Ignore bond lengths and bond angles	

Question Number	Acceptable Answers	Additional Guidance	Mark
8(b)*	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content. The following table shows how the marks should be awarded for structure and lines of reasoning.	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6)

	Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout. Answer is partially structured with some linkages and lines of reasoning. Answer has no linkages between points and is unstructured. Comment: Look for the indicative marking points mark for structure of answer and susta	Number of marks awarded for structure of answer and sustained line of reasoning first, then consider the ned line of reasoning	In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0,1 or 2 indicative points would score zero marks for reasoning. General points to note If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s). e.g. Mention of splitting on the ${ }^{13} \mathrm{C}$ spectra Deduct 1 reasoning mark if the similarity in IP1 has not been explicitly mentioned

	Indicative content - IP1 - Similarity both ${ }^{1} \mathrm{H}$ NMR spectra have a peak (which is a singlet with relative peak area 1) for OH - IP2 - ${ }^{13} \mathrm{C}$ spectra 3 peaks for propan-1-ol and 2 peaks for propan-2-ol - IP3 - ${ }^{1} \mathrm{H}$ spectra number of peaks 4 peaks for propan-1-ol and 3 peaks for propan-2-ol - IP4 - ${ }^{1} \mathrm{H}$ spectra relative peak areas (relative) peak areas 3 : 2 : 2 : 1 for propan-1-ol, 6:1:1 for propan-2-ol - IP5 - ${ }^{1} \mathrm{H}$ splitting pattern for propan-1-ol 2 triplets, 1 sextet / split into 6 and 1 singlet - IP6 - ${ }^{1} \mathrm{H}$ splitting pattern for propan-2-ol 1 doublet, 1 septet / split into 7 and 1 singlet	All IP can be shown on clearly labelled diagrams of structures and/ or spectra Allow carbon environments for peaks Ignore any reference to peak areas Allow 3:2:2 and 6:1 if peak areas for OH given in similarity Allow ratios in any order e.g. 1:2:2:3 Allow hextet for sextet Ignore missing singlet if this has been given in similarity Allow heptet for septet Ignore missing singlet if this has been given in similarity

(Total for Question 8 = 10 marks)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{9 (a) (\mathbf { i })}$	fraction / proportion / number of molecules / particles with energy, E	Allow fraction / proportion / number of molecules / particles Allow label written on y axis on diagram	(1)

Question Number	Answer	Additional Guidance	Mark
9(a)(ii)	- peak for T_{2} to the left of T_{1} - peak for T_{2} higher than T_{1} and asymptote lower than T_{1} line and not touching the x axis	 Ignore missing label from added line Do not award M2 if added line curves upwards at the end	(2)

Question Number	Answer	Additional Guidance	Mark
9(a)(iii)	An explanation that makes reference to the following points: - (at a lower temperature the) molecules / particles / collisions have lower (kinetic) energy - so fewer molecules / particles / collisions have energy greater than (or equal to) the activation energy / E_{a}	Ignore molecules / particles move more slowly Allow fewer molecules / particles have (enough energy to overcome) the activation energy Allow this shown as labelled shading on the diagram Ignore just 'fewer successful collisions'	(2)

Question Number	Answer	Additional Guidance	Mark
9(a)(iv)	- $\mathrm{E}_{\text {cat }}$ labelled anywhere between the energy corresponding to the highest point of the peak and to the left of E_{a}	 Allow other clear labels for $\mathrm{E}_{\text {cat }}$	(1)

Question Number	Answer		Additional Guidance	Mark
9(b)	- substitution of numbers into expression - evaluation of k_{2} / k_{1} or $\ln k_{2} / k_{1}$ and $1 / T_{1}-1 / T_{2}$ - rearrangement of expression - evaluation of expression - answer given to $2 / 3 \mathrm{SF}$ and corresponding units	(1) (1) (1) (1) (1)	Example of calculation $\left.\ln \frac{4.87 \times 10^{-3}}{1.50 \times 10^{-3}}=\frac{-E_{a}}{8.31} \frac{1}{338}-\frac{1}{328}\right)$ $k_{2} / k_{1}=3.2467$ or $\ln k_{2} / k_{1}=1.1776$ Allow 487/ 150 for In k_{2} / k_{1} and $1 / T_{1}-1 / T_{2}=(-) 9.0201 \times 10^{-5}$ Allow (-)5/ 55432 for (-) 9.0201×10^{-5} e.g. $E_{a}=\frac{1.1776 \times 8.31}{9.0201 \times 10^{-5}}$ or $\underset{\mathrm{R}}{\mathrm{E}_{a}}=\frac{1.1776}{9.0201 \times 10^{-5}} \quad /=13056$ $E_{a}=108493$ TE on $\ln \left(k_{2} / k_{1}\right)$ and $1 / T_{1}-1 / T_{2}$ $=\left(+108000 / 110000 \mathrm{~J} \mathrm{~mol}^{-1}\right.$ or (+108 / $110 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Do not award negative value Expression may be rearranged before any evaluation Correct answer to 2/3 SF and units with no working scores (5)	(5)

