

GCE

Chemistry A

Unit H432A/01: Periodic table, elements and physical chemistry

Advanced GCE

Mark Scheme for June 2017

PMT

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations available in RM Assessor

Annotation	Meaning
~	Correct response
×	Incorrect response
	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Mark Scheme

June 2017

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

SECTION A

Question	Answer	Marks	Guidance
1	D	1	
2	D	1	
3	C	1	ALLOW +6 in the box
4	C	1	
5	В	1	ALLOW 20 in the box
6	С	1	
7	Α	1	
8	D	1	
9	C	1	
10	Α	1	
11	Α	1	
12	C	1	ALLOW 4.1 in the box
13	В	1	ALLOW 0.426 in the box
14	С	1	
15	В	1	
	Total	15	

Question	Answer	Marks	Guidance
16 (a) (i)		1	IGNORE no brackets, no charge or wrong charge Circles not needed ALLOW different sign for 'extra' electron, e.g.
(b)	NH₄ ⁺ : tetrahedral AND 109.5(°) ✓ NH₂ ⁻ : non-linear AND 104.5(°) ✓	2	ALLOW 109–110(°) ALLOW 104–105(°) ALLOW bent, v-shaped, angular IGNORE planar, 'not straight'

Question	Answer	Marks	Guidance
(c) <i>(i)</i>	 NH₃ has hydrogen bonding OR PH₃ does not have hydrogen bonding ✓ Hydrogen bonding is stronger OR More energy to overcome hydrogen bonding ✓ 	2	ORA throughout Assume that comparison is with PH ₃ DO NOT ALLOW response that implies covalent or ionic bonds breaking
(ii)	AsH ₃ / As has more electrons (than PH ₃ / P) ✓ in AsH ₃ , stronger/more induced dipole–dipole interactions OR stronger/more London forces (than PH ₃) OR more energy required to overcome induced dipole–dipole interactions ✓	2	ORA throughout ALLOW larger electron cloud ALLOW 'forces' OR 'bonds' for 'interactions' ALLOW instantaneous/temporary–induced dipole interactions ALLOW dispersion forces IGNORE van der Waals' / vdW IGNORE permanent dipole–dipole DO NOT ALLOW response that implies covalent or ionic bonds breaking
	Total	7	

Q	uestion	Answer	Marks	Guidance
17	(a)	$Ba(OH)_2 + 2HCl \to BaCl_2 + 2H_2O\checkmark$	1	ALLOW multiples IGNORE state symbols (even if wrong)
	(b)	<i>Increasing size:</i> Atomic radius increases OR more shells OR more (electron) shielding ✓	3	FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED IGNORE more orbitals OR more sub-shells Alternative must refer to shells ALLOW Energy levels for shells ALLOW more electron repulsion between shells IGNORE just 'shielding' (more/greater needed) IGNORE 'nuclear shielding'
		<pre>Attraction Nuclear attraction decreases OR (outer) electron(s) experience less attraction ✓ Ionisation energy Ionisation energy decreases OR less energy needed to remove electron(s) ✓</pre>		IGNORE 'pull' for attraction IGNORE 'electrons less tightly held' IGNORE 'nuclear charge' for 'nuclear attraction' IGNORE 'easier to remove electron' <i>Energy is required</i> ALLOW less energy to oxidise

Quest	ion	Answer	Marks	Guidance
(C)	(i)	Disproportionation: oxidation and reduction of the same element ✓ <i>Redox</i> : C <i>l</i> is oxidised from +5 (in KC <i>l</i> O ₃) to +7 (in KC <i>l</i> O ₄) ✓ C <i>l</i> is reduced from +5 (in KC <i>l</i> O ₃) to –1 (in KC <i>l</i>) ✓	3	 ALLOW 'chlorine' OR 'Cl' for same element IGNORE 'species' for 'element' ALLOW after number, e.g. 5+ IGNORE ionic charges, e.g. Cl⁵⁺ IGNORE '5' (signs required) IGNORE any reference to electron loss/gain (even if wrong) ALLOW one redox mark if oxidation numbers are correct but reduction/oxidation is incorrectly assigned
	(ii)	potassium chlorate(VII) ✓	1	Brackets required
(d)	(i)	Equation Ba(NO ₃) ₂ (aq) + Na ₂ SO ₄ (aq) → BaSO ₄ (s) + 2NaNO ₃ (aq) ✓ Entropy change and explanation entropy decreases OR entropy change negative AND (BaSO ₄) solid/ppt has less disorder/ more order/ fewer ways of arranging energy/ less freedom/ less random particles/dispersal of energy ✓	2	ALLOW multiples M2 is dependent on BaSO ₄ (s) (even if formula is incorrect – eg Ba(SO ₄) ₂ (s)) seen as a product in the attempted equation as long as reactants are not solid. BaSO ₄ solid/ppt may be assumed from BaSO ₄ (s) seen in the attempted equation.

Question	Answer	Marks	Guidance	
(ii)	Equation $\frac{1}{2}I_2(s) \rightarrow I(g) \checkmark$ state symbols required	2	DO NOT ALLOW $I_2(s) \rightarrow 2I(g)$	
	Entropy change and explanation entropy increases OR entropy change positive AND gas has more disorder/ less order/ more ways of arranging energy/ more freedom/ more random particles / more dispersal of energy ✓		DEPENDENT on $\frac{1}{2}I_2(s) \rightarrow I(g)$ OR $I_2(s) \rightarrow 2I(g)$	
	Total	12		

C	Question		Answer	Marks	Guidance
18	(a)		$\Delta G = \Delta H - T \Delta S$ linked to $y = mx + c$ (somewhere) \checkmark gradient = $-\Delta S \checkmark$	4	Could be: $\Delta G = -\Delta S T + \Delta H$ - sign required ALLOW $\Delta S = -gradient$
			 P: ∆H / enthalpy change ✓ Q: (temperature) for reaction to be feasible/unfeasible OR (temperature) at which feasibility changes ✓ 		ALLOW 'point of feasibility' For Feasibility: ALLOW can take place/happen OR is spontaneous IGNORE 'minimum/maximum temperature'
	(b)	(i)	(Species have) different states/phases ✓	1	
		(ii)	$(\mathcal{K}_{p} =) p(CO(g))^{4} \checkmark$	1	Allow species without state symbols and without brackets, e.g. p_{CO}^4 , $ppCO^4$, PCO^4 , $p(CO^4)$ etc. DO NOT ALLOW square brackets
		(iii)	$\Delta G \text{ at } 25 \text{ C}$ $\Delta G = \Delta H - T\Delta S = 676.4 - (298 \times 0.7031)$ $= (+) 467 \text{ (kJ mol}^{-1}) \mathbf{OR} (+) 466876 \text{ (J mol}^{-1}) \checkmark$ Non-feasibility statement Non-feasible when $\Delta G > 0$ $\mathbf{OR} \ \Delta G > 0 \ \mathbf{OR} \ \Delta H > T\Delta S \checkmark$ Minimum temperature minimum temperature $= \frac{\Delta H}{\Delta S} = \frac{676.4}{0.7031}$ $= 962(.0) \text{ K } \checkmark$	3	IGNORE units ALLOW (+) 467 up to calculator value of 466.8762 correctly rounded ECF for any positive value determined in M1 ALLOW 962 up to calculator value of 962.0253165 correctly rounded

Question	Answer		Guidance		
(iv)	(iv) FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = –110.5, Award 3 marks.	3	For answer, ALLOW –111 (kJ mol ^{−1})		
	Correct expression $-13.5 = (4 \times -393.5) - (-1118.5 + 4 \times \Delta_{f}H(CO)) \checkmark$ Correct subtraction using ΔH and $\Delta_{f}H(Fe_{3}O_{4})$		5	lues are omitted, DO N rks. e.g. –393.5 OR –13	
	$4 \times \Delta_{\rm f} H({\rm CO}) = (4 \times -393.5) - (-1118.5) + 13.5$ = - 442(.0) (kJ mol ⁻¹) ✓		Common errors		
	Calculation of ∆ _f <i>H</i> (CO) formation		(+)110.5	wrong/omitted sign	2 marks
	$\Delta_{\rm f} H({\rm CO}) = -\frac{442}{4} = -110.5 ({\rm kJ \ mol}^{-1}) \checkmark$		(+)184.625 / 184	.63 / 184.6 / 185 No 4CO2	2 marks
			(+)738.5 / 739	No $4CO_2$ and no $CO/4$	1 mark
			–117.25 / –117.3	I –117 Wrong cycle	2 marks
			-469	Wrong cycle, no CO/4	1 mark
			(+)177.875 / 177	.88 / 177.9 / 178 Wrong cycle, no 4CO ₂	1 mark
			-360.5	Used 118.5	2 marks
			marking point for	er: CHECK for ECF fron expressions using ALL nly e.g. one transcriptio 5.5	values
	Total	12			

Questi	on	Answer	Marks	Guidance
19 (a)		$n(H_2O_2) = 2.30 \times \frac{25.0}{1000}$ OR = 0.0575 (mol) \checkmark vol $O_2 = \frac{0.0575}{2} \times 24000 = 690$ cm³ \checkmark Collect in 1000 cm ³ /1 dm ³ measuring cylinder \checkmark	3	 ALLOW 0.69(0) dm³ 2nd mark subsumes 1st mark ALLOW 1000 cm³/1 dm³ syringe Needs a name of actual apparatus, not just 'container' 'measuring cylinder' without volume is insufficient DO NOT ALLOW burette For other possible apparatus, contact Team Leader ALLOW volumes from 700–1000 cm³ but should be realistic apparatus, e.g. 700, 750, 800, 850, 900, 950.
(b)		Measure mass (loss) ✓	1	ALLOW weight for mass ALLOW take samples and titrate (remaining H ₂ O ₂)

Question	Answer	Marks	Guidance
(C)*	 Please refer to the marking instructions on page 5 of mark scheme for guidance on marking this question. Level 3 (5–6 marks) A comprehensive conclusion using quantitative data from the graph to correctly determine initial rate AND half lives/gradient with 1st order conclusion for H₂O₂ AND determination of <i>k</i>. There is a well-developed line of reasoning which is clear and logically structured. Clear working for initial rate, half life/gradient and order and k. Units mostly correct throughout. Level 2 (3–4 marks) Attempts to describe all three scientific points but explanations may be incomplete. OR Explains two scientific points thoroughly with few omissions. There is a line of reasoning with some structure and supported by some evidence. The scientific points are supported by evidence from the graph. Level 1 (1–2 marks) Reaches a simple conclusion using at least one piece of quantitative data from the graph. Attempts to calculate initial rate OR half life. There is an attempt at a logical structure with a reasoned conclusion from the evidence. 0 marks No response worthy of credit. 	6	Indicative scientific points may include: Initial rate • Tangent shown on graph as line at $t = 0$ s • Gradient determined in range: $1.5 - 2.0 \times 10^{-3}$ e.g. $\frac{2.3}{1300} = 1.77 \times 10^{-3}$ • <i>initial rate</i> as gradient value with units: mol dm ⁻³ s ⁻¹ <i>For other methods contact TL</i> Evidence for 1st order 2 methods • 1st order clearly linked to half-life OR 2 gradients: 1. Half life • Half life shown on graph • Half life range 800–1000 s • Two 'constant' half lives ±50 s 2. Two gradients \rightarrow two rates • 2 tangents shown on graph at <i>c</i> and <i>c</i> /2 • Gradient at <i>c</i> /2 is half gradient at <i>c</i> e.g. <i>c</i> = 2.3 mol dm ⁻³ , gradient = 1.6 × 10 ⁻³ AND <i>c</i> = 1.15 mol dm ⁻³ , gradient = 0.8 × 10 ⁻³ • For chosen method, conclusion: H ₂ O ₂ is 1st order Determination of <i>k</i> 2 methods • <i>k</i> clearly linked to rate OR half-life: $k = \frac{rate}{[H_2O_2]}$ e.g. $k = \frac{1.6 \times 10^{-3}}{2.3} = 7 \times 10^{-4}$ s ⁻¹ OR $k = \frac{\ln 2}{t_{v_2}}$ e.g. $k = \frac{0.693}{950} = 7.3 \times 10^{-4}$ s ⁻¹
	Total	10	

Qı	uesti	on	Answer	Marks	Guidance
20	(a)		Conditions Low/decreased pressure AND high/increased temperature ✓	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			Pressure: Right-hand/product side has more (gaseous) moles/molecules OR left-hand side/reactant side has fewer (gaseous) moles/molecules ✓		DO NOT ALLOW more atoms on right-hand side OR fewer atoms on left-hand side. DO NOT ALLOW incorrect shift direction
			Temperature: (Forward) reaction is endothermic / takes in heat OR reverse reaction is exothermic / gives out heat ✓		
			Low pressure gives a slow rate OR High temperature uses a large amount of energy/fuel ✓		ORA IGNORE 'expensive' IGNORE use of catalyst
	(b)	(i)	$(\mathcal{K}_{c} =) \frac{[SO_{3}]^{2}}{[SO_{2}]^{2} [O_{2}]} \checkmark$ Units: dm ³ mol ⁻¹ \checkmark	2	 IGNORE state symbols in K_c expression, even if wrong. For units, ALLOW mol⁻¹ dm³ DO NOT ALLOW dm³/mol NOTE: If K_c upside down, units become mol dm⁻³ by ECF No other ECF allowed for units.

Question	Answer	Marks	Guidance
(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.45, Award 4 marks. Equilibrium concentrations (moles × 2.5) 1 MARK $SO_2 = 0.135 \text{ (mol dm}^{-3}\text{)}$ AND $O_2 = 0.0675 \text{ (mol dm}^{-3}\text{)} \checkmark$	4	FULL ANNOTATIONS NEEDED IF there is an alternative answer, check to see if there is any ECF credit possible using working below
	Calculation of $[SO_3(g)]$ 2 MARKS $[SO_3] = \sqrt{(K_c \times [SO_2]^2 \times O_2)}$ $OR \sqrt{((3.045 \times 10^4) \times 0.135^2 \times 0.0675)} \checkmark$ $= 6.12039291 \text{ (mol dm}^{-3}) \checkmark$ Answer scores both $[SO_3]$ marks automatically		 ALLOW ECF from incorrect concentrations of SO₂ and/or O₂ ALLOW ECF from incorrect [SO₃] ALLOW 3 SF, 6.12, up to calculator value of 6.12039291 correctly rounded. Common errors
	Calculation of <i>n</i> (SO ₃) in 400 cm ³ 1 MARK <i>n</i> (SO ₃) = 6.12039291/2.5 = 2.45 (mol) ✓ 3SF required (Appropriate number)		37.51 mark No $\sqrt{for} [SO_3]^2$ and no scaling by 1/2.515.02 marks No $\sqrt{for} [SO_3]^2$ 0.6193 marks Use of mol of SO2 and O21.552 marks No conc used and Use of mol of SO2 and O2
		Total 11	

Question		Ans	swer		Marks	Guidance	
21 (a)	IF answer = 0.7 [H ⁺] = 10 ^{-pH} = 1	(THE ANSWER (753, award 3 mar $0^{-2.440} = 3.63 \times 10^{-2.440}$ $\frac{(H^{+})^2}{K_a}$ OR $(3.63 \times 1.75 \times 1.75$	ks D ⁻³ (mol dm ⁻³) •		3	ALLOW use of HA and A ⁻ ALLOW 3 SF up to calculator value of 3.630780548 × 10 ⁻³ correctly rounded NOTE: Answer is same from unrounded [H ⁺] calculator value and 3 SF [H ⁺] value ALLOW 0.749 if [H ⁺] has been subtracted from [CH ₃ COOH] for greater accuracy at end	
(b)	CH₃COOH + F B2 OR B1 i.e. labels other	CH₂COOH A1 A2 r way round	CH₃COOH₂⁺ A2 A1	+ FCH₂COC B1 B2) ✓ 2	Watch for opposite order on RHS, i.e.: FCH ₂ COO ⁻ + CH ₃ COOH ₂ ⁺ Take great care matching labels ALLOW ECF for incorrect proton transfer as below. This is the ONLY ECF CH ₃ COOH + FCH ₂ COOH \rightleftharpoons CH ₃ COO ⁻ + FCH ₂ COOH ₂ ⁺ × A1 B2 B1 A2 OR A2 B1 B2 A1 \checkmark ECF <i>i.e. labels other way round</i>	

uestion	Answer	Marks	Guidance	
(c) (i)	$\begin{bmatrix} [CH_{3}COO^{-}] \\ n(CH_{3}COONa) &= \frac{9.08}{82.0} \text{ OR } 0.111 \checkmark (Calc: 0.1107317073) \\ [CH_{3}COO^{-}] &= \frac{9.08}{82.0} \times \frac{1000}{250} = 0.443 \text{ (mol dm}^{-3}) \\ \text{OR } n(CH_{3}COOH) &= 0.800 \times \frac{250}{1000} = 0.200 \text{ (mol)} \checkmark \\ \\ \begin{bmatrix} H^{+} \end{bmatrix} \\ [H^{+}] &= K_{a} \times \frac{[CH_{3}COOH]}{[CH_{3}COO]} \text{ OR } K_{a} \times \frac{n(CH_{3}COOH)}{n(CH_{3}COO)} \\ &= 1.75 \times 10^{-5} \times \frac{0.800}{0.443} \text{ OR } 1.75 \times 10^{-5} \times \frac{0.200}{0.111} \checkmark \\ &= 3.16 \times 10^{-5} \text{ (mol dm}^{-3}) \checkmark \\ \\ \text{PH } \text{ (must come from calculated [H^{+}])} \\ pH &= -\log (3.16 \times 10^{-5}) = 4.50 \checkmark \\ \\ \hline \text{LAST 3 marks are NOT available using} \\ & K_{a} \text{ square root approach (weak acid pH)} \\ & K_{w} / 10^{-14} \text{ approach (strong base pH)} \\ \hline \text{Henderson-Hasselbalch (HH) alternative} \\ pK_{a} &= -\log 1.75 \times 10^{-5} = 4.757 \text{ (or } 4.756961951) \\ pH &= pK_{a} + \log \frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]} \text{ OR } = pK_{a} - \log \frac{[CH_{3}COOH]}{0.443} \checkmark \\ &= pK_{a} - 0.257 \checkmark \\ &= 4.757 - 0.257 = 4.50 \checkmark \\ \end{aligned}$	5	ALLOW 2 sig fig ALLOW use of HA and A ⁻ Mark by ECF Alternative method (If both methods are attempted, mark the method which produces the higher mark) [H ⁺] = $10^{-pH} = 10^{-4.50}$ = 3.16×10^{-5} (mol dm ⁻³) \checkmark [CH ₃ COO ⁻] = $K_a \times \frac{[CH_3COOH]}{[H^+]}$ OR $1.75 \times 10^{-5} \times \frac{0.800}{3.16 \times 10^{-5}} \checkmark$ = 0.443 (mol dm ⁻³) \checkmark mass of CH ₃ COONa mass CH ₃ COONa = $0.443 \times \frac{250}{1000}$ OR $0.111 \checkmark$ $0.111 \times 82.0 = 9.08$ (g) \checkmark Common errors 4.64 Use of $M(CH_3COONa) = 60$ 4 marks 2.40 Use of K_a of FCH ₂ COOH 4 marks	

H432/01	
---------	--

Mark Scheme

Q	Question		Answer	Marks	Guidance
		(ii)	pH is the same/constant \checkmark	2	M2 is dependent upon M1
			ratio/proportion [HA]/[A ⁻] is the same \checkmark		ALLOW Change in [HA] and [A ⁻] is proportional
			Total	12	

Q	uesti	on	Answer	Marks	Guidance
22	(a)	(i)	Circuit: complete circuit AND voltmeter AND labelled salt bridge linking two half-cells ✓ Half cells: Pt AND Fe ²⁺ AND Fe ³⁺ ✓ Zn AND Zn ²⁺ ✓ Standard conditions: 1 mol dm ⁻³ (solution(s)) AND 298 K / 25°C ✓	4	Electrodes / salt bridge must at least touch the surface ALLOW small gaps in circuit wires ALLOW half cells drawn either way around ALLOW 1 mol/dm ³ OR 1 M ALLOW 1 mol dm ⁻³ /1M if omitted here but shown for just one solution in diagram IGNORE pressure DO NOT ALLOW 1 mol(e) for concentration
		(ii)	1.53 (V) ✓	1	IGNORE sign
	(b)		strongest reducing agent. Zn \checkmark strongest oxidising agent. MnO ₄ ⁻ \checkmark	2	NOTE: H ⁺ has been ignored
	(c)		AWARD 2 marks for correct balancing AND all species cancelled on both sides of equation: $2MnO_4^- + 6H^+ + 5SO_3^{2-} \rightarrow 2Mn^{2+} + 3H_2O + 5SO_4^{2-} \checkmark \checkmark$ AWARD 1 mark for correct balancing but not all species (H_2O, H^+) cancelled on both sides of equation \checkmark e.g. $2MnO_4^- + 16H^+ + 5SO_3^{2-} + 5H_2O$ $\rightarrow 2Mn^{2+} + 8H_2O + 5SO_4^{2-} + 10H^+$	2	ALLOW correct multiples e.g. $MnO_4^- + 3H^+ + 2\frac{1}{2}SO_3^{2-}$ $\rightarrow Mn^{2^+} + 1\frac{1}{2}H_2O + 2\frac{1}{2}SO_4^{2-}$ IGNORE state symbols e.g. $MnO_4^- + 8H^+ + 2\frac{1}{2}SO_3^{2-} + 2\frac{1}{2}H_2O$ $\rightarrow Mn^{2^+} + 4H_2O + 2\frac{1}{2}SO_4^{2-} + 5H^+$
			Total	9	

H432A/01		1	Mark Sc		June 2	
Question			Answer		Guidance	
23	(a)	(i)	CuC l_4^{2-} OR [CuC l_4] ²⁻ \checkmark yellow solution Cu(OH) ₂ \checkmark pale blue precipitate	5	ALLOW Cu(C <i>I</i>) ₄ ^{2–} ALLOW Cu(OH) ₂ (H ₂ O) ₄	
			[Cu(NH ₃) ₄ (H ₂ O) ₂] ² deep blue solution	÷√ 1	Brackets required for [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺	
			Cul \checkmark I2 \checkmark white solidbrown solution		Take great care to check that subscripted numbers and brackets are correct	
		(ii)	Reaction 1: ligand substitution \checkmark	2	ALLOW ligand exchange	
			Reaction 2: redox ✓		ALLOW reduction AND oxidation ALLOW precipitation	

PMT

Question	Answer	Marks	Guidance
(b)*	 Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) A comprehensive conclusion using all data to obtain correct formulae for A, B, C and D AND optical isomers shown There is a well-developed line of reasoning which is clear and logically structured with use of 3D structures for both optical isomers of C, use of wedges and bonding to N. The information presented is relevant and substantiated. Level 2 (3–4 marks) Reaches a sound conclusion for the formula of B AND obtains the correct formula of the hydrated complex A OR a 3D diagram of one optical isomer of cation C There is a line of reasoning and supported by some evidence. Calculations are clear and can be followed to obtain correct conclusions. 3D diagram, if present, should use wedges mostly correctly. Formula of A to show water separately or formula of C to show ligands separately, as appropriate. Level 1 (1–2 marks) Reaches a simple conclusion to obtain the correct formula of anhydrous complex B OR shows that A contains 2H₂O There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. Attempts more than one part of the problem. O marks No response or no response worthy of credit. 	6	Indicative scientific points may include: 1. Formula of anhydrous complex B NiC ₆ N ₆ H ₂₄ Cl ₂ Example of working Ni : C : N : H : Cl = $\frac{18.95}{58.7}$: $\frac{23.25}{12.0}$: $\frac{27.12}{14.0}$: $\frac{7.75}{1.00}$: $\frac{22.93}{35.5}$ There may be other methods 2. Formula of hydrated complex A NiC ₆ N ₆ H ₂₄ Cl ₂ •2H ₂ O OR NiC ₆ N ₆ H ₂₄ Cl ₂ (H ₂ O) ₂ Example of working n(anhydrous salt) = $\frac{7.433}{309.7}$ = 0.02400 (mol) $n(H_2O) = \frac{0.864}{18.0}$ = 0.04800 (mol) \checkmark There may be other methods 3. Formula of cation C [NiC ₆ N ₆ H ₂₄] ²⁺ OR [Ni(H ₂ NCH ₂ CH ₂ NH ₂) ₃]] ²⁺ (could be in structures 2+ charge can be shown on cation OR optical isomers (i.e. seen somewhere) • Bidentate ligand D H ₂ NCH ₂ CH ₂ NH ₂ or displayed so that structure is clearly unambiguous. • Optical isomers $\left[\overbrace{H_2N}^{NH_2} H_2 \\ H_2N \overbrace{H_2N}^{NH_2} H_2 \\ H_2N \overbrace{H_2N}^{P} H_2 \\ H_2N \underbrace{H_2N \atop_{H_2N}^{P} H_2 \\ H_2N \underbrace{H_2N \underset{H_2N}^{P} H_2 \\ H_2N H_2N $
			Accuracy of structures

H032/01

Question	Answer	Marks	Guidance	
			Bonding shown from Ni to N of H ₂ NCH ₂ CH ₂ NH ₂ ALLOW CH ₃ CH(NH ₂) ₂ for ligand For H ₂ NCH ₂ CH ₂ NH ₂ in optical isomers, ALLOW C–C without Hs and NH ₂ NH ₂ Each structure to contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge': Ni Ni Bond into paper can be shown as: ¹ ////////////////////////////////////	
	Total	13		

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

