Oxford Cambridge and RSA

GCE

Chemistry A

Unit H032/01: Breadth in chemistry
Advanced Subsidiary GCE
Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2018

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

SECTION A

Question	Answer	Marks	Guidance
1	C	1	
2	C	1	
3	B	1	
4	C	1	
5	A	1	
6	C	1	
7	D	1	
8	C	1	
9	A	1	
10	D	1	
11	B	1	
12	B	1	
13	C	1	
14	B	1	
15	D	1	
16	C	1	
17	A	1	
18	D	1	
19	C	1	
20	D	1	
		20	

Question			Answer					Marks	Guidance
21	(a)	(i)		Protons	Neutrons	Electrons		1	
			${ }^{29} \mathrm{Si}$	14	16	14	\checkmark		
	(a)	(ii)	FIRST CHECK ANSWER ON THE ANSWER LINE IF answer = 28.11 (to 2 DP) award 2 marks $\frac{(28 \times 92.23)+(29 \times 4.68)+(30 \times 3.09)}{100}$ OR 28.1086 OR 28.109 $=28.11 \text { (to } 2 \text { DP) } \checkmark$					2	For 1 mark: ALLOW ECF \rightarrow to 2 DP if: - \%s used with wrong isotopes ONCE OR - transposed decimal places for ONE \%
	(b)	(i)	CARE: Check that lone pairs on Cl and O are included - $\mathrm{Cl}(\times 2)$ has 6 non-bonded electrons (3 LPs) - O has 4 non-bonded electrons (2 LPs)					1	NOTE: O and Cl electrons MUST be shown differently from C electrons (e.g. expected answer) IGNORE inner shells ALLOW diagram with missing C , O or Cl symbols. For $\mathrm{C}=\mathrm{O}$ bond, ALLOW sequence $\times \times \cdots$ ALLOW non-bonding electrons unpaired

Question		Answer	Marks	Guidance
(b)	(ii)	Shape Trigonal planar \checkmark Number of bonded regions (C has) 3 electron (dense) regions OR 3 bonding regions \checkmark Electron pair repulsion (Seen anywhere) electron pairs/bonded pairs/bonded regions repel OR electron pairs move as far apart as possible OR bonds repel	3	ALLOW bp for bonded pair ALLOW 3 bonded pairs (BOD) OR 3 sigma bonds OR 2 bonded pairs and 1 double bond OR 4 bonded pairs including a double bond IGNORE bonded atoms IGNORE just 3 bonds ALLOW alternative phrases/words for repel e.g. 'push apart' IGNORE electrons repel (pairs needed) DO NOT ALLOW atoms repel
(c)		Highest energy electron(s) in a p orbital/p sub-shell \checkmark	1	ALLOW outer electron(s) in a p orbital/sub-shell BUT IGNORE p shell ALLOW electron configuration ends in p OR the last electron is in a p orbital ALLOW valence electron(s) in p orbital/sub-shell
		Total	8	

Question			Answer	Marks	Guidance
22	(a)	(i)	Oxidised AND (Mg) transfers/loses/donates 2 electrons \checkmark 2 essential	1	ALLOW Mg loses 6 electrons: 3 Mg in equation ALLOW Mg $\rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$ IGNORE oxidation numbers (even if wrong)
	(a)	(ii)	FIRST CHECK ANSWER ON THE ANSWER LINE IF answer = 2.26 (3 SF) award 3 marks $\begin{aligned} & n\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)=\frac{1.24 \times 50.0}{1000}=0.062(0)(\mathrm{mol}) \checkmark \\ & n(\mathrm{Mg}) \quad=\frac{3}{2} \times 0.062(0)=0.093(0)(\mathrm{mol}) \checkmark \\ & \text { mass of } \mathbf{M g}=0.0930 \times 24.3=2.26(\mathrm{~g}) \\ & 3 \text { SF required } \end{aligned}$	3	At least 3SF needed throughout BUT ALLOW no trailing zeroes (e.g. 0.062 for 0.0620) ALLOW ECF from $n\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ ALLOW ECF from $n(\mathrm{Mg})$ COMMON ERRORS for 2 marks 3:2 ratio omitted $\rightarrow n(\mathrm{Mg})=0.062(0) \rightarrow 1.51(\mathrm{~g})$ Inverted 2:3 ratio $\rightarrow n(\mathrm{Mg})=0.0413 \rightarrow 1.00(\mathrm{~g})$
	(a)	(iii)	Separation of solid Filter to obtain solid/precipitate Requires realisation that solid is filtered off. Solid may be stated within in 'removal of water' Removal of water Dry (solid) OR Evaporate (water/solution/liquid)	2	ALLOW Removal of water Evaporate/ distil water/solution/liquid IGNORE 'distil' if product OR H_{2} is distilled Collection of remaining solid Requires realisation that solid remains IGNORE 'Leave to crystallise' (already solid)
	(a)	(iv)	```Formula MgO OR \(\mathrm{Mg}(\mathrm{OH})_{2}\) OR \(\mathrm{MgCO}_{3}\) OR soluble Mg salt \(\checkmark\) Equation \(3 \mathrm{MgO}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{H}_{2} \mathrm{O}\) OR \(3 \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}\) OR \(3 \mathrm{MgCO}_{3}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \checkmark\)```	2	In equation: NO ECF from incorrect formula ALLOW multiples IGNORE state symbols (even if incorrect) Soluble Mg salts include $\mathrm{MgCl}_{2}, \mathrm{MgSO}_{4}, \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{MgBr}_{2}, \mathrm{MgI}_{2}$ If unsure, check with TL e.g. $3 \mathrm{MgCl}_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{HCl}$

Question			Answer	Marks	Guidance
23	(a)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF $\Delta_{r} H=-457$ OR $\mathbf{- 4 5 8}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 4 marks IF $\Delta_{r} H= \pm 229$ OR $457\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 3 marks Energy released in J OR kJ $=25.0 \times 4.18 \times 28.0=2926(\mathrm{~J})$ OR $2.926(\mathrm{~kJ}) \checkmark$ Correctly calculates $\boldsymbol{n}\left(\mathrm{AgNO}_{3}\right)$ $=0.512 \times \frac{25.0}{1000}=1.28 \times 10^{-2}(\mathrm{~mol})$ ΔH per mole AgNO_{3} in kJ AND 3 SF Answer MUST divide energy by $n\left(\mathrm{AgNO}_{3}\right)$ $\begin{aligned} \pm \frac{2.926}{1.28 \times 10^{-2}} & = \pm 228.59375 \\ & = \pm 229(\mathrm{~kJ}) \end{aligned}$ 3 SF needed Sign NOT needed ΔH for 2 mol AgNO_{3} AND - sign AND 3 SF $\Delta H_{\mathrm{r}}=2 \times-228.59375=-457\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ OR $2 \times-229=-458\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \vee$	4	FULL ANNOTATIONS MUST BE USED ALLOW ECF throughout ALLOW 2930 J OR 2.93 kJ DO NOT ALLOW < 3 SF IGNORE any sign and units i.e. ALLOW correctly calculated number in J OR kJ Alternative approach using 1 mol Mg $\begin{aligned} & \text { Energy released }=2926(\mathrm{~J}) \mathrm{OR} 2.926(\mathrm{~kJ}) \checkmark \\ & n\left(\mathrm{AgNO}_{3}\right) \\ & =1.28 \times 10^{-2}(\mathrm{~mol}) \downarrow \\ & n(\mathrm{Mg})=\frac{1.28 \times 10^{-2}}{2}= \\ & =6.4 \times 10^{-3}(\mathrm{~mol}) \downarrow \\ & \Delta H_{\mathrm{r}}=\frac{2.926}{6.4 \times 10^{-3}} \quad=-457\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark \\ & \\ & \text { sign AND } 3 \mathrm{SF} \text { needed } \end{aligned}$
	(a)	(ii)	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s}) \checkmark$ State symbols required White precipitate AND $\mathrm{AgNO}_{3} / \mathrm{Ag}^{+}$NOT ALL reacted OR NO white precipitate AND $\mathrm{AgNO}_{3} / \mathrm{Ag}^{+}$ALL reacted \checkmark	2	$\text { ALLOW } \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq})$ Observation needs to be linked to conclusion

Question		Answer	Marks	Guidance
24	(a)	Structural isomers: 1 mark Different structural formulae AND same molecular formula \checkmark Common molecular formula: $\mathrm{C}_{5} \mathrm{H}_{12}$ for all 3 hydrocarbons	5	For 'structural': ALLOW different structure OR different displayed/ skeletal formula DO NOT ALLOW any reference to spatial/space/3D Same formula is not sufficient (no 'molecular') Different arrangement of atoms is not sufficient (no 'structure'/'structural') ALLOW 5 carbons and 12 hydrogens ALLOW for 2 marks: Different structural formulae AND same molecular formula \checkmark of $\mathrm{C}_{5} \mathrm{H}_{12} \checkmark$
		Boiling point and branching: 1 mark Boiling point decreases with more branching OR more methyl/alkyl groups/side chains OR shorter carbon chain \checkmark Branching and London forces: Could be seen anywhere within response More branching gives less (surface) contact AND fewer/weaker London forces \checkmark Energy and intermolecular forces: Less energy to break London forces/ intermolecular forces/intermolecular bonds/ \checkmark		Comparisons needed throughout ORA throughout ALLOW comparison between any alcohols, e.g. A is least branched and has highest b pt C is most branched and has lowest b pt ALLOW induced dipole(-dipole) interactions IGNORE van der Waals'/vdw forces ALLOW SA for surface area ALLOW 'harder to overcome intermolecular forces ALLOW more energy to separate the molecules IGNORE just 'bonds' intermolecular/London forces required

Question			Answer	Marks	Guidance
(b)	(i)	Radical substitution \checkmark		1	ALLOW Free radical substitution
(b)	(ii)			2	
		A	B		
		$3 \checkmark$	$4 \checkmark$		
(b)	(iii)	Structure Stru ALL CHE Equation $\mathrm{C}_{5} \mathrm{H}$ Mole NO ECF fr	trichloro isomer of A, e.g. richloro isomer of \mathbf{A} ully $\rightarrow \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{Cl}_{3}+3 \mathrm{HCl}$ ect structure of \mathbf{D}	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) IGNORE molecular formula ALLOW multiples, $\text { e.g. } 2 \mathrm{C}_{5} \mathrm{H}_{12}+6 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{Cl}_{3}+6 \mathrm{HCl}$
				10	

Question			Answer	Marks	Guidance
25	(a)	(i)	 G	3	ALLOW correct structural OR displayed OR skeletal formulae OR mixture of the above (as long as unambiguous) IGNORE molecular formula ALLOW CH ${ }_{3}-$ ALLOW 1 mark for G AND H combined is structures are correct but in wrong boxes
	(a)	(ii)	2-methylpropan-1-ol \checkmark Both numbers required	1	IGNORE absence of hyphen or use of dots or commas as separators

Question		Answer	Marks	Guidance
(b)	(ii)	Disappearance of peak at $500-800 \mathrm{~cm}^{-1}$ OR C-Br peak \checkmark Appearance of peak at $3200-3600 \mathrm{~cm}^{-1}$ OR alcohol O-H peak \checkmark	$\mathbf{2}$	ALLOW value within range 500-800 cm^{-1}

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk
For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

