Oxford Cambridge and RSA

GCE

Chemistry A

Unit H032/01: Breadth in chemistry
Advanced Subsidiary GCE
Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in RM Assessor

Annotation	Meaning
\checkmark	Correct response
*	Incorrect response
\wedge	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
13	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
\pm	Ignore

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

SECTION A

Question	Answer	Marks	Guidance
1	A	1	
2	D	1	
3	B	1	
4	C	1	
5	D	1	
6	A	1	
7	A	1	
8	A	1	
9	D	1	
10	D	1	
11	C	1	
12	B	1	
13	B	1	
14	A	1	
15	C	1	
17	B	1	
18	A	1	
19	A	1	
20	B	1	
	A	1	

SECTION B

Question		Answer	Marks	Guidance
21 (a)	(i)		3	ALLOW structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) For connectivity, DO NOT ALLOW OH-
	(ii)	$\mathrm{H}^{+} / \mathrm{acid} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{3} \mathrm{PO}_{4} \checkmark$	1	ALLOW HCl IGNORE (aq) OR ‘dilute’ OR concentrated
(b)	(i)	TAKE CARE of ' n ' position on both sides of equation.	2	For monomer, ALLOW correct molecular OR structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) For repeat unit, DO NOT ALLOW molecular formula NOTE: ‘side bonds' ARE required on either side of repeat unit from C atoms ALLOW section of polymer containing more than one repeat unit NO ECF from incorrect repeat unit

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |
| | (ii) | Formation of HCl/hydrochloric acid/
 OR chlorine \checkmark | $\mathbf{1}$ | ALLOW CI or Cl2 for chlorine
 IGNORE toxic waste products
 Response must reflect chlorine in some way |
| | | Total | $\mathbf{7}$ | |

Question			Answer				Marks	Guidance
22	(a)	(i)	m/z	protons	neutrons	electrons		
			24	12	12	11		
			25	12	13	11		
			26	12	14	11		
			Mark vertically: protons AND neutrons electrons					
		(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = $\mathbf{2 4 . 3 2}$ award $\mathbf{2}$ marks$\frac{(24 \times 78.99)+(25 \times 10.00)+(26 \times 11.01)}{100}$				2	ALLOW ECF for a correct calculation to 2 DP if: - \%s have been used with wrong isotopes ONCE OR - decimal places for ONE \% have been transposed

Question		Answer	Marks	Guidance
(c)	(i)	 $\mathrm{Ne}(Z=10)$ shown higher than 1500 (i.e. $>\mathrm{Ar}) \checkmark$	1	Look carefully for small dots on the y axis IGNORE no straight line from Ne (10) to Na (11)
(c)	(ii)	$\frac{500}{6.02 \times 10^{23}}=8.3 \times 10^{-22}(\mathrm{~kJ})$ Answer MUST be to 2 SF AND in standard form.	1	ALLOW use of IEs close to 500 giving a range: $8.0 \times 10^{-22}-8.6 \times 10^{-22}$ i.e. $8.3 \pm 0.3 \times 10^{-22}$
(c)	(iii)	Nuclear charge number of protons/proton number increases OR greater nuclear charge \checkmark Distance/shielding (Outer) electrons are in the same shell OR (Outer) electrons experience the same/similar shielding OR Atomic radius decreases Attraction Greater nuclear attraction (on outer electrons) OR (outer) electrons are attracted more strongly (to the	3	FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED Comparison should be used for each mark IGNORE atomic number increases IGNORE nucleus gets bigger IGNORE 'effective nuclear charge increases' IGNORE same sub-shell OR same orbital IGNORE 'there is shielding' ALLOW 'greater repulsion from inner shells' ALLOW 'pull' for 'attraction' IGNORE just 'greater attraction' OR greater force

Question		Answer		Marks	Guidance
		nucleus) ${ }^{\text {r }}$			IGNORE 'held' for attracted, e.g. IGNORE 'held more strongly
(c)	(iv)	Sub-shells Mg electron is removed from (3)s AND Al electron is removed from (3)p Energy levels Al electron has a higher energy OR (3)p has higher energy than (3)s \checkmark		2	IGNORE number before s and p e.g. ALLOW (2)s and (2)p ALLOW response implying that orbitals/sub-shell changes from sto p IGNORE comments about distance from nucleus IGNORE 'less energy to remove' DO NOT ALLOW unpaired electron removed more easily (ORA)
			Total	16	

| Question | | Marks | Guidance |
| :---: | :---: | :---: | :---: | :--- |
| 23 (a) | | FULL ANNOTATIONS WITH TICKS, CROSSES, CON,
 etc MUST BE USED | |

Questi	Answer	Marks	Guidance
	AND x: (kinetic) energy Catalyst and activation energy Catalyst provides a lower activation energy OR E_{c} shown below E_{a} on Boltzmann distribution More molecules/particles/collisions have energy above activation energy (with catalyst) OR greater area under curve above activation energy \checkmark		DO NOT ALLOW 'atoms' as y-axis label DO NOT ALLOW 'enthalpy' for x -axis label ALLOW 'more molecules have enough energy to react' IF y axis labelled as 'atoms' ALLOW ECF for atoms (instead of molecules/particles) IGNORE (more) successful collisions IGNORE response implying 'more collisions' (confusion with effect of greater temperature)
(b)	Two max $\checkmark \checkmark$ from: - Lower temperatures/less heat/less thermal energy - Less fossil fuels/oil/coal/gas/non-renewable fuels - Reduces CO_{2} emissions	2	IGNORE lower pressures OR less energy (in question) IGNORE just 'less fuel' IGNORE less global warming IGNORE less greenhouse gases, less CO, less NO CO_{2} required
(c)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=14.6\left(\mathrm{dm}^{2} \mathrm{~mol}^{-6}\right)$ award 2 marks K_{c} expression $\left(K_{\mathrm{c}}=\right) \frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{2}} \text { OR } \frac{0.26}{0.310 .24^{2}}$ OR $14.56 \ldots \ldots$.	2	FULL ANNOTATIONS MUST BE USED IF there is an alternative answer, check to see if there is any ECF credit possible using working below. \qquad ALLOW calculated value 14.5609319 correctly rounded to 3 or more SF for 1st marking point ALLOW ECF to 3 SF ONLY from inverted K_{c} expression

| Question | | Answer | Marks | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | Answer to 3 SF
 $14.6\left(\mathrm{dm}^{6} \mathrm{~mol}^{-2}\right) \checkmark$ | | $\rightarrow 0.0687$ |

Question			Answer	Marks	Guidance
24	(a)		(Acid) releases H^{+}ions/ H^{+}donor AND (weak acid) partially dissociates/ionises \checkmark	1	ALLOW H ${ }^{+}$OR proton IGNORE vague responses that do not imply a number, e.g. - poor proton donor IGNORE 'doesn't easily dissociate’ IGNORE 'a strong acid completely dissociates' Question is about a weak acid
	(b)	(i)	$2 \mathrm{Al}(\mathrm{s})+6 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightarrow \mathbf{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \mathrm{Al}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})^{\checkmark}$	1	ALLOW multiples, e.g. $\mathrm{Al}(\mathrm{~s})+3 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \mathrm{Al}(\mathrm{aq})+11 / 2 \mathrm{H}_{2}(\mathrm{~g})$
		(ii)	Element oxidised: aluminium/AI 0 to $+3 \checkmark$ Element reduced: hydrogen/H +1 to $0 \checkmark$	2	ALLOW 3+ for +3 and $1+$ for +1 ALLOW H_{2} for hydrogen ALLOW 1 mark for elements AND all oxidation numbers correct, but H in oxidised line and Al in reduced line ' + ' is required in +3 and +1 oxidation numbers IGNORE numbers around equation (treat as rough working)

	32/01		Mark	Mark Scheme	
Question			Answer	Marks	Guidance
$\begin{aligned} & \hline 2 \\ & 5 \end{aligned}$	(a)	(i)	More energy is released by forming bonds than energy required when breaking bonds \checkmark	1	ORA Response needs link between energy, breaking and making bonds ALLOW 'bond breaking is endothermic' AND 'bond making is exothermic' ALLOW within labelled energy diagram
		$\stackrel{\text { (ii }}{\text {) }}$	FIRST, CHECK THE ANSWER ON ANSWER LINE IF bond enthalpy $=(+) 612\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 3 marks IF bond enthalpy $=(-) 316\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks Energy for bonds made ($4 \times \mathrm{C}=\mathrm{O}+4 \times \mathrm{O}-\mathrm{H}$) $4 \times 805+4 \times 464$ $\begin{array}{lll}\text { OR } & 3220+1856\end{array}$ OR 5076 (kJ) Energy for bonds broken ($4 \times \mathrm{C}-\mathrm{H}+3 \times \mathrm{O}=\mathrm{O}$) $4 \times 413+3 \times 498$ OR $1652+1494$ OR $3146(\mathrm{~kJ}) \checkmark$ C=C bond enthalpy correctly calculated $\mathrm{C}=\mathrm{C}$ bond enthalpy $=-1318-3146+5076$ $=(+) 612 \mathrm{~kJ} \mathrm{~mol}^{-1} \checkmark$ Mark is for answer	3	FULL ANNOTATIONS MUST BE USED IGNORE sign IGNORE sign ALLOW ECF DO NOT ALLOW - sign COMMON ERRORS $\begin{array}{lll}+2106 & \text { omission of } 30=0 & \text { 2 marks } \\ -3248 & -1318+3146-5076 & \text { 2 marks }\end{array}$
	(b)		FIRST check the molar mass on answer line MUST be derived from $p V=n R T$, Award 4 marks for calculation for: - answer = 70 - OR answer that rounds to 69.9 OR 70.0	5	FULL ANNOTATIONS MUST BE USED If there is an alternative answer, check to see if there is any ECF credit possible using working

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
GROUP

OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

