

GCE

Chemistry A

Unit H032/01: Breadth in chemistry

Advanced Subsidiary GCE

Mark Scheme for June 2017

PMT

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations available in RM Assessor

Annotation	Meaning
*	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
LI	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

H032/01

Mark Scheme

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

PMT

June 2017

SECTION A

Question	Answer	Marks	Guidance
1	Α	1	
2	D	1	
3	В	1	
4	C	1	
5	D	1	
6	Α	1	
7	Α	1	
8	Α	1	
9	D	1	
10	D	1	
11	С	1	
12	В	1	
13	В	1	
14	Α	1	
15	С	1	
16	В	1	
17	Α	1	
18	Α	1	
19	В	1	
20	Α	1	
	Total	20	

SECTION B

Q	uesti	on	Answer	Marks	Guidance
	(a)	(i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	ALLOW structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) For connectivity, ALLOW CH ₃ - C ₃ H- OH CH ₃ DO NOT ALLOW OH-
		(ii)	H ⁺ /acid/H ₂ SO₄/H ₃ PO₄ ✓	1	ALLOW HCI IGNORE (aq) OR 'dilute' OR concentrated
	(b)	(i)	$ \begin{array}{c} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	2	 For monomer, ALLOW correct molecular OR structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) For repeat unit, DO NOT ALLOW molecular formula NOTE: 'side bonds' ARE required on either side of repeat unit from C atoms ALLOW section of polymer containing more than one repeat unit NO ECF from incorrect repeat unit

Q	Question		Answer	Marks	Guidance
		(ii)	Formation of HCl/hydrochloric acid/ OR chlorine ✓	1	ALLOW CI or Cl ₂ for chlorine IGNORE toxic waste products Response must reflect chlorine in some way
			Total	7	

Q	Question			Answer				Marks	Guidance
22	(a)	(i)		m/z	protons	neutrons	electrons	2	
				24	12	12	11		
				25	12	13	11		
				26	12	14	11		
		(!!)			electro				
		(ii)	lf answe (24 × 78	er = 24. .99) + (20 OR	32 award (25 × 10.00 100 24.3202 ✓	2 marks)) + (26 × 11	1E ANSWER .01)	LINE 2	 ALLOW ECF for a correct calculation to 2 DP if: %s have been used with wrong isotopes ONCE OR decimal places for ONE % have been transposed

H032/	01
-------	----

Q	Question		Answer	Marks	Guidance
	(b)		Observations linked to anion identifications Bubbles/effervescence/fizzing/gas AND carbonate ✓	5	FULL ANNOTATIONS WITH TICKS, CROSSES,CON, etc MUST BE USEDFor bubbles,ALLOW carbon dioxide/CO2BUTDO NOT ALLOW hydrogen/H2
			(white OR precipitate) AND sulfate ✓		For carbonate, For sulfate,ALLOW CO_3 ALLOW SO_4
			Use of molar mass in reasoning Molar mass used ONCE with carbonate OR sulfate ✓		e.g. Carbonate: 140 – (12 + 48); 140 – 60 Sulfate: 140 – (32.1 + 64); 140 – 96.1 K ₂ CO ₃ = 138.1 Na ₂ SO ₄ = 142.1
			Identification		
			B : K ₂ CO ₃ ✓		 ALLOW ONE of the two identification marks for: Correct names: B potassium carbonate AND C sodium sulfate
			C: Na₂SO₄ ✓		 Incorrect formulae i.e. B KCO₃ AND C NaSO₄ Communicates the same as names

Question	Answer	Marks	Guidance	
(C) (i)	2500 2000 1500 1000 500 1000 500 1000 10	1	Look carefully for small dots on the y axis	
	Ne (Z = 10) shown higher than 1500 (i.e. > Ar) ✓		IGNORE no straight line from Ne (10) to Na (11)	
(c) (ii)	$\frac{500}{6.02 \times 10^{23}} = 8.3 \times 10^{-22} \text{ (kJ) } \checkmark$ Answer MUST be to 2 SF AND in standard form.	1	ALLOW use of IEs close to 500 giving a range: $8.0 \times 10^{-22} - 8.6 \times 10^{-22}$ i.e. $8.3 \pm 0.3 \times 10^{-22}$	
(c) (iii)	 Nuclear charge number of protons/proton number increases OR greater nuclear charge ✓ Distance/shielding (Outer) electrons are in the same shell OR (Outer) electrons experience the same/similar shielding OR Atomic radius decreases ✓ 	3	FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED Comparison should be used for each mark IGNORE atomic number increases IGNORE nucleus gets bigger IGNORE 'effective nuclear charge increases' IGNORE same sub-shell OR same orbital IGNORE 'there is shielding' ALLOW 'greater repulsion from inner shells'	
	Attraction Greater nuclear attraction (on outer electrons) OR (outer) electrons are attracted more strongly (to the		ALLOW 'pull' for 'attraction' IGNORE just 'greater attraction' OR greater force	

Q	Question		Answer		Guidance
			nucleus) ✓		IGNORE 'held' for attracted, e.g. IGNORE 'held more strongly
	(c)	(iv)	 Sub-shells Mg electron is removed from (3)s AND Al electron is removed from (3)p ✓ Energy levels Al electron has a higher energy OR (3)p has higher energy than (3)s ✓ 	2	 IGNORE number before s and p e.g. ALLOW (2)s and (2)p ALLOW response implying that orbitals/sub-shell changes from s to p IGNORE comments about distance from nucleus IGNORE 'less energy to remove' DO NOT ALLOW unpaired electron removed more easily (ORA)
			Total	16	

Question	Answer	Marks	Guidance
	 AND x: (kinetic) energy ✓ Catalyst and activation energy Catalyst provides a lower activation energy OR 		DO NOT ALLOW 'atoms' as y-axis label DO NOT ALLOW 'enthalpy' for x-axis label
	More molecules/particles/collisions have energy above activation energy (with catalyst) OR greater area under curve above activation energy ✓		ALLOW 'more molecules have enough energy to react' IF y axis labelled as 'atoms' ALLOW ECF for atoms (instead of molecules/particles) IGNORE (more) successful collisions IGNORE response implying 'more collisions' (confusion with effect of greater temperature)
(b)	 Two max √√ from: Lower temperatures/less heat/less thermal energy Less fossil fuels/oil/coal/gas/non-renewable fuels Reduces CO₂ emissions 	2	IGNORE lower pressures OR less energy (in question) IGNORE just 'less fuel' IGNORE less global warming IGNORE less greenhouse gases, less CO, less NO CO ₂ required
(c)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 14.6 (dm ² mol ⁻⁶) award 2 marks 	2	FULL ANNOTATIONS MUST BE USED IF there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW calculated value 14.5609319 correctly rounded to 3 or more SF for 1st marking point ALLOW ECF to 3 SF ONLY from inverted K _c expression

Mark Scheme

C	Question		Answer		Guidance
			Answer to 3 SF 14.6 (dm ⁶ mol ⁻²) ✓		→ 0.0687 DO NOT ALLOW $\frac{[CH_3OH]}{[CO] + [H_2]^2} = 0.707$ (no marks)
			Total	8	

Q	Question		Answer	Marks	Guidance
24	(a)		(Acid) releases H ⁺ ions/ H ⁺ donor AND (weak acid) partially dissociates/ionises ✓	1	 ALLOW H⁺ OR proton IGNORE vague responses that do not imply a number, e.g. • poor proton donor IGNORE 'doesn't easily dissociate' IGNORE 'a strong acid completely dissociates' <i>Question is about a weak acid</i>
	(b)	(i)	2 Al(s) + 6 CH ₃ COOH(aq) \rightarrow 2 (CH ₃ COO) ₃ Al(aq) + 3 H ₂ (g) \checkmark	1	ALLOW multiples, e.g. Al(s) + $3CH_3COOH(aq) \rightarrow (CH_3COO)_3Al(aq) + 1\frac{1}{2}H_2(g)$
		(ii)	Element oxidised: aluminium/Al 0 to +3 ✓ Element reduced: hydrogen/H +1 to 0 ✓	2	 ALLOW 3+ for +3 and 1+ for +1 ALLOW H₂ for hydrogen ALLOW 1 mark for elements AND all oxidation numbers correct, but H in oxidised line and Al in reduced line '+' is required in +3 and +1 oxidation numbers IGNORE numbers around equation (treat as rough working)

Question	Answer		Guidance FULL ANNOTATIONS MUST BE USED 	
(c) (i)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 2.21 (mol dm ⁻³) award 4 marks			
	TITRATION M1 $n(Ba(OH)_2)$ in 25.0 cm ³ = = 1.125 × 10 ⁻³ (mol) ✓ M2 $n(CH_3COOH)$ in 25.45 cm ³ diluted vinegar = 2 × 1.125 × 10 ⁻³ = 2.25 × 10 ⁻³ (mol) ✓		Apply ECF where appropriate ALLOW ECF from <i>n</i> (Ba(OH) ₂)	
	SCALINGALLOW ECF from n(CH3COOH)M3[CH3COOH] in diluted vinegar		ALTERNATIVE APPROACHES FOR M3 AND M4	
	$= \frac{2.25 \times 10^{-3} \times 1000}{25.45} = 0.0884 \text{ (mol dm}^{-3}) \checkmark$ Calculator: 0.0884086		M3 <i>n</i> (CH ₃ COOH) in 25.45 cm ³ original vinegar = $\frac{2.25 \times 10^{-3} \times 250}{10.0}$ = 0.05625 (mol) ✓	
	M4 [CH ₃ COOH] in original vinegar = $\frac{0.0884 \times 250}{10.0}$ = 2.21 (mol dm ⁻³) \checkmark		M4 [CH ₃ COOH] in original vinegar = $\frac{0.05625 \times 1000}{25.45}$ = 2.21 (mol dm ⁻³) ✓	
	- 10.0 - 2.21 (morant) *		M3 <i>n</i> (CH ₃ COOH) in 250 cm ³ diluted vinegar = $\frac{2.25 \times 10^{-3} \times 250}{25.45}$ = 0.0221 (mol) ✓	
			M4 [CH ₃ COOH] in original vinegar = 0.0221 × $\frac{1000}{250}$ × $\frac{250}{10.0}$ = 2.21 (mol dm ⁻³) ✓	
(c) (ii)	Assumption: Vinegar contains (ethanoic acid and) no other acids ✓	2	For credit, the response must refer to other acids IGNORE impurities, solution is pure, etc	
	Prediction: Expermental result is greater than conc of CH_3COOH OR conc of CH_3COOH is less than experimental result \checkmark		ONLY award the 'prediction' mark if 'assumption' mark is correct	
	Total	10		

1032/01	Mark Scheme			
Question	Answer	Marks	Guidance	
(a) (i)	More energy is released by forming bonds than energy required when breaking bonds ✓	1	 ORA Response needs link between energy, breaking and making bonds ALLOW 'bond breaking is endothermic' AND 'bond making is exothermic' ALLOW within labelled energy diagram 	
(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF bond enthalpy = (+)612 (kJ mol ⁻¹) award 3 marks IF bond enthalpy = (-)316 (kJ mol ⁻¹) award 2 marks Energy for bonds made ($4 \times C=O + 4 \times O-H$) $4 \times 805 + 4 \times 464$ OR $3220 + 1856$ OR 5076 (kJ) \checkmark Energy for bonds broken ($4 \times C-H + 3 \times O=O$) $4 \times 413 + 3 \times 498$ OR $1652 + 1494$ OR 3146 (kJ) \checkmark C=C bond enthalpy correctly calculated C=C bond enthalpy = -1318 - 3146 + 5076 = (+)612 kJ mol ⁻¹ \checkmark Mark is for answer	3	FULL ANNOTATIONS MUST BE USED - IGNORE sign IGNORE sign ALLOW ECF DO NOT ALLOW – sign COMMON ERRORS + 2106 omission of 30=0 2 marks	
(b)	FIRST check the molar mass on answer line MUST be derived from <i>pV</i> = <i>nRT</i> , Award 4 marks for calculation for: • answer = 70 • OR answer that rounds to 69.9 OR 70.0	5	-3248 -1318 + 3146 - 5076 2 marks FULL ANNOTATIONS MUST BE USED 	

Question	Answer	Marks	Guidance
	Rearranging ideal gas equation to make <i>n</i> subject $n = \frac{pV}{RT}$ ✓ Substituting all values including conversion to Pa and m ³		below 1 st mark may be implicit by direct substitution of correct values below into rearranged equation.
	$n = \frac{(101 \times 10^{3}) \times (82.5 \times 10^{-6})}{8.314 \times 373} \checkmark$ $n = 2.68693073 \times 10^{-3} \rightarrow 2.69 \times 10^{-3} \text{ (mol)} \checkmark$ unrounded rounded to 3 SF		ONLY award this mark if <i>n</i> has been derived from correct rearranged ideal gas equation ALLOW 3 SF up to calculator value, correctly rounded
	Calculation of molar mass, M $M = \frac{m}{n} = \frac{0.1881}{2.68693073 \times 10^{-3}} = 70(.0) \text{ (g mol}^{-1})$ $\rightarrow \frac{0.1881}{2.69 \times 10^{-3}} = 69.9 \text{ (g mol}^{-1}) \checkmark$ Molecular formula of D $C_5H_{10} \checkmark$ IF candidate has failed to derive suitable value of <i>n</i> , ALLOW value of <i>M</i> from 0.1881 AND 24000 with alkene		NOTE: ALLOW 69.9 \rightarrow 70.0 AND 70 (2 SF) Calculator from unrounded: 70.00552634 ALLOW any unambiguous structure ALLOW ECF provided that formula given is an alkene and matches <i>M</i> calculated from 0.1881 AND $pV = nRT$
	closest to calculated value for last 2 marks See Guidance column.		= 54.72 OR 54.7 OR 55 \checkmark ALLOW 54.68 from use of 3.44 × 10 ⁻³ From 54.72, ONLY ALLOW = C ₄ H ₈ \checkmark
	Total	9	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

