Oxford Cambridge and RSA

GCE

Chemistry A

Unit H032/01: Breadth in chemistry
Advanced Subsidiary GCE
Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in RM Assessor

Annotation	Meaning
\checkmark	Correct response
*	Incorrect response
\wedge	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
\square	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
I, OR	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

SECTION A

Question Answer	Marks	AO element		
1	B	1		
2	C	1		
3	D	1		
4	A	1		
5	C	1		ALLOW +5 OR 5+ in box
6	C	1		ALLOW 8 in box
7	B	1		
8	D	1		
9	C	1		
10	B	1		
11	D	1		
12	B	1		
13	B	1		
14	C	1		
15	B	1		
16	D	1		
17	D	1		
18	B	1		
19	B	1		
20	D	1		
		20		

SECTION B

| Question | | Answer | Marks | AO
 element | Guidance |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |

Question		Answer	Marks	AO element	Guidance
(b)	(ii)	FIRST CHECK ANSWER ON THE ANSWER LINE If answer $=3.97 \times 10^{22}$ (from 63.62) award 2 marks If answer $=3.98 \times 10^{22}$ (from 63.5) award 2 marks \qquad Using 63.62: correct A_{r} of Cu from 21(b)(i) See bottom of answer zone $n(\mathrm{Cu})=\frac{5.00 \times 0.840}{63.62}=\frac{4.2}{63.62}=0.066(0)(\mathrm{mol}) \checkmark$ Cu atoms $=0.0660 \times 6.02 \times 10^{23}=3.97 \times 10^{22} \checkmark$ Must be calculated in standard form AND to 3 SF OR- \qquad Using 63.5: $\quad A_{r}$ of Cu from periodic table $n(\mathrm{Cu})=\frac{5.00 \times 0.840}{63.5}=\frac{4.2}{63.5}=0.0661(\mathrm{~mol}) \vee$ Cu atoms $=0.0661 \times 6.02 \times 10^{23}=3.98 \times 10^{22} \checkmark$ Must be calculated in standard form AND to 3 SF	2	$\underset{\times 2}{ }$	If there is an alternative answer, check to see if there is any ECF credit possible SEE answer from 21b(i) at bottom of answer zone ALLOW correct answer from 3 SF up to calculator value of 0.06601697579 ALLOW incorrect $n(\mathrm{Cu}) \times 6.02 \times 10^{23}$ correctly calculated to 3 SF AND in standard form For ECF, A_{r} must have been used for $n(C u)$ ALLOW correct answer from 3 SF up to calculator value of 0.06614173228 ALLOW incorrect $n(\mathrm{Cu}) \times 6.02 \times 10^{23}$ correctly calculated to 3 SF AND in standard form For ECF, A_{r} must have been used for $n(C u)$
(c)	(i)	$\mathrm{NiO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	AO1.2	ALLOW multiples IGNORE state symbols (even if wrong)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Answer \& Marks \& AO element \& Guidance \\
\hline (c) \& (ii) \& \begin{tabular}{l}
Global rules \\
- N and O electrons must be shown differently, e.g. \(\cdot\) for N and \(\times\) for O \\
- 'Extra' electron shown with different symbol \\
MARKING \\
Bonding around central \(N\) atom \(\checkmark\) \\
- 5 electrons for \(N\) shown as • OR \(\times\) \\
- 3 electrons for O , different from N as \(\cdot \mathrm{OR} \times\) \\
- \(\mathrm{N}=\mathrm{O}\) bond with 2 N electrons AND 2 O electrons \\
- \(\mathrm{N} \rightarrow \mathrm{O}\) bond with 2 N electrons \\
- N-O bond with 1 N electron AND 1 O electron \\
Non-bonded (nb) electrons around 30 atoms \(\checkmark\) \\
- \(\mathrm{N}=\mathrm{O}\) oxygen has 4 nb ' O ' electrons \\
- \(\mathrm{N} \rightarrow \mathrm{O}\) oxygen has 6 nb ' O ' electrons \\
- \(\mathrm{N}-\mathrm{O}^{-}\)oxygen has 5 nb ' O ' electrons \\
AND 1 'extra' electron with different symbol
\end{tabular} \& 2 \& AO2.1

AO2.5 \& | NOT REQUIRED |
| :--- |
| - Charge ('-‘) |
| - Brackets |
| - Circles |
| IGNORE inner shells |
| ALLOW rotated diagram |
| ALLOW diagram with missing N or O symbols. Shown as diagram on QP anyway |
| In $\mathbf{N}=\mathbf{O}$ bond, ALLOW sequence $\times \times \cdots$ |
| In N-O bond, ALLOW 'extra' electron with different symbol for O electron |
| ALLOW non-bonding electrons unpaired |
| If 'extra' electron has been used in $\mathrm{N}-\mathrm{O}^{-}$bond, $\mathrm{N}-\mathrm{O}^{-}$oxygen MUST have 6 nb ' O ' electrons |
| ALLOW 'extra' electron as • OR \times if it has been labelled 'extra electron' or similar |

\hline \& \& Total \& 9 \& \&

\hline
\end{tabular}

Question			Answer	Marks	AO element	Guidance
22	(a)		Initial ratios $\begin{aligned} & \mathrm{Cr}, \frac{19.51}{52.0} ; \text { CI, } \frac{39.96}{35.5} ; \text { H, } \frac{4.51}{1.0} ; \text { O, } \frac{36.02}{16.0} \\ & \text { OR } \quad \text { Cr, } 0.375 ; \text { CI, 1.126; H,4.51; O, } 2.25 \end{aligned}$ Whole number ratios $\mathrm{Cr}, 1 ; \mathrm{Cl}, 3 ; \mathrm{H}, 12 ; \mathrm{O}, 6 \checkmark$ Formula with water of crystallisation $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O} \checkmark$	3	AO1.2 AO1. 2 AO2. 2	NOTE: If only the correct answer of $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is seen with no working, award 1 mark only IF there is no whole number ratio, ALLOW empirical formula: $\mathrm{CrCl}_{3} \mathrm{H}_{12} \mathrm{O}_{6}$ ALLOW ECF from incorrect whole number ratio, provided ONLY Cl incorrect AND $6 \mathrm{H}_{2} \mathrm{O}$, $\text { e.g. } \mathrm{CrCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
	(b)	(i)	$\frac{2 \times 0.005}{0.58} \times 100=1.72 \% \checkmark$	1	AO2.8	ALLOW 2\% OR 1.7\% up to calculator value of 1.724137931
	(b)	(ii)	Use balance weighing to $3 /$ more decimal places OR Use a larger mass/amount	1	AO3.3	ALLOW more precise/more accurate/ more sensitive/higher resolution/smaller division IGNORE 'less error/smaller interval balance’ IGNORE any reference to lid on crucible (water can't escape) IGNORE 'weigh straight after heating' IGNORE idea of repeating the experiment/ taking an average/ getting concordant results /larger sample size, etc.

Question		Answer	Marks	$\begin{gathered} \text { AO } \\ \text { elemt } \end{gathered}$	Guidance
(b)	(iii)	Heat to constant mass \checkmark	1	AO3.4	ALLOW response that implies heating to constant mass, e.g. Heat again until the mass does not change IGNORE 'heat for longer' Needs link to constant mass
(c)		FIRST CHECK ANSWER ON THE ANSWER LINE If answer = $24.8\left(\mathbf{c m}^{3}\right)$ award 3 marks $\begin{aligned} & n(\mathrm{NaOH})=0.124 \times \frac{25.0}{1000}=3.1(0) \times 10^{-3}(\mathrm{~mol}) \\ & n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=\frac{3.10 \times 10^{-3}}{2}=1.55 \times 10^{-3}(\mathrm{~mol}) \\ & V\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=1.55 \times 10^{-3} \times \frac{1000}{6.25 \times 10^{-2}}=24.8\left(\mathrm{~cm}^{3}\right) \end{aligned}$	3	$\begin{gathered} \mathrm{AO} 2.8 \\ \times 3 \end{gathered}$	ALLOW ECF from $\frac{n(\mathrm{NaOH})}{2}$ ALLOW ECF from $n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) \times \frac{1000}{6.25 \times 10^{-2}}$
(d)		Element oxidised: aluminium $/ \mathrm{Al}$ 0 to $+3 \checkmark$ Element reduced: hydrogen $/ \mathrm{H} / \mathrm{H}^{+}+1$ to $0 \checkmark$	2	AO1.1 AO1.2	MAX 1 mark if no ' + ' sign for oxidation number ALLOW 3+ ALLOW 1+ ALLOW H_{2} for hydrogen ALLOW 1 mark for all oxidation numbers correct, but oxidised and reduced the wrong way around IGNORE numbers around equation i.e. treat as rough working
		Total	14		

| Question | | Answer | Marks | AO
 element | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Question		Answer	Marks	AO	Guidance
(c)	(i)	Silver nitrate OR $\mathrm{AgNO}_{3} \checkmark$	1	A01.1	ALLOW Ag ${ }^{+}$ IF name correct, IGNORE an incorrect formula IGNORE acidified/ HNO_{3}
(c)	(ii)	Chloride: white (precipitate) AND Bromide: cream (precipitate) AND iodide: yellow (precipitate)	1	A01.1	All three required for the mark
			6		

Ques	Answer	Marks	AO element	Guidance
(b)	$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{Pbl}_{2}(\mathrm{~s}) \checkmark$ State symbols required	1	AO2.7	ALLOW $\mathrm{Pb}^{+2}(\mathrm{aq})$ IGNORE spectator ions, $\mathrm{K}^{+}(\mathrm{aq})$ and $2 \mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$ on both sides
(c)	FIRST, CHECK ANSWER ON ANSWER LINE IF [KI(aq)] rounds to $3.3 \mathrm{~mol} \mathrm{dm}^{-3}$ e.g. 3.30, 3.33, 3.3 recurring Method 1 [$\mathrm{KI}(\mathrm{aq})]$ for complete reaction $=2 \times 0.0750=0.150 \mathrm{~mol} \times \frac{1000}{50}=3\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ 10% greater gives $3 \times 1.1=3.3(0) \checkmark$ OR \qquad Method 2 $n(\mathrm{KI}(\mathrm{aq}))$ required $=2.2 \times 0.0750=0.165 \mathrm{~mol}$ $[\mathrm{KI}(\mathrm{aq})]=0.165 \times \frac{1000}{50}=3.3(0)\left(\mathrm{mol} \mathrm{dm}^{-3}\right) \checkmark$	2	$\begin{gathered} \mathrm{AO} 2.8 \\ \times 2 \end{gathered}$	ALLOW ECF from incorrect $n\left(\mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}\right)$ from 24(a) BUT if (a) is incorrect but 0.0750 used here, treat as a fresh start and IGNORE response from 24(a) ALLOW 2 marks for 3.3/3.3 recurring Attempt at increasing concentration by 10% $=2 \times 0.0750=0.150 \mathrm{~mol} \times \frac{1000}{45}=3.33\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ ALLOW ECF from incorrect n (KI)
	Total	7		

Ques	Answer	Marks	$\underset{\text { AO }}{\text { AO }}$	Guidance
(b)	```Value of K}\mp@subsup{\boldsymbol{K}}{\boldsymbol{c}}{ K AND equilibrium (position) is towards left```	4	AO3.2	FULL ANNOTATIONS MUST BE USED ALLOW suitable alternatives for 'towards left, e.g.: towards $\mathrm{SO}_{2} / \mathrm{O}_{2}$ OR towards reactants OR in reverse direction OR 'favours the left
	Calculation: FIRST CHECK ANSWER IF $\left[\mathrm{SO}_{3}\right]=0.876 \mathrm{OR} 0.88(\mathrm{~mol} \mathrm{dm})$ award all 3 marks available for calculation Calculation of $\left[\mathrm{SO}_{3}\right]$ ONLY available from correct evaluation for 2nd mark $\begin{aligned} & {\left[\mathrm{SO}_{3}\right]=\sqrt{ }\left(0.160 \times 2.00^{2} \times 1.20\right)} \\ & =0.876\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark \end{aligned}$		A01.2 AO2.6 AO2.6	Square brackets required in K_{c} expression ALLOW ECF from $\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$, i.e. no $\left[\mathrm{SO}_{3}\right]^{2}$ ALLOW 0.77 (2 SF) ALLOW 0.88 ($\mathbf{2} \mathbf{~ S F}$) up to calculator value of 0.876356092 correctly rounded IF K_{c} expression is inverted 2 nd and 3rd marks are available by ECF: $\begin{aligned} & {\left[\mathrm{SO}_{3}\right]^{2}=\frac{2.00^{2} \times 1.20}{0.160} \text { OR } 30 \checkmark} \\ & {\left[\mathrm{SO}_{3}\right]=\sqrt{ } 30=5.48 \mathrm{OR} 5.5} \end{aligned}$ Any other K_{c} expression \rightarrow NO MARKS, e.g. $\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}+\left[\mathrm{O}_{2}\right]} \rightarrow \sqrt{ } 0.832 \rightarrow 0.912 \quad$ NO marks
	Total	9		

				Mark Scheme		June 2016
Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
26	(a)	(i)	Alkene AND $\mathrm{C}_{n} \mathrm{H}_{2 n} \checkmark$	1	AO1.1	IGNORE branched before alkene
	(a)	(ii)	Hydrogen/ H_{2} AND Ni (catalyst) \checkmark	1	AO1.2	ALLOW Pt OR Pd OR Rh ALLOW hydrogenation for hydrogen IGNORE any temperature and pressure stated
	(b)		Compound C: CARE: Tertiary alcohol Compound D: (repeat unit)	2	AO2.5 AO2.5	For structures: ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above Connectivity IGNORE connectivity of bonds to CH_{3} e.g. ALLOW CH 3_{3} ALLOW any vertical bond to OH , e.g. ALLOW $\underset{\mid}{\mathrm{OH}} \mathrm{OR} \underset{\mathrm{l}}{\mathrm{OH}}$ DO NOT ALLOW OH- DO NOT ALLOW more than one repeat unit REQUIRED: Side links (dotted lines fine) NOT REQUIRED: Brackets and ' n '
	(c)	(i)	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \checkmark$	1	A01.2	ALLOW elements in any order DO NOT ALLOW any other answer

Question		Answer	Marks	AO element	Guidance
(c)	(ii)	Compound E : Stage 1: Compound E: Bromine/Br ${ }_{2}$ Stage 2: $\quad \mathrm{NaOH} / \mathrm{KOH}$ OR $\mathrm{OH}^{-} \checkmark$ Only award if intermediate contains at least one halogen atom	3	AO3. 2 AO3.1 AO3. 1	For structures: ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above ALLOW dichloro/diiodo compound IGNORE connectivity of bonds to CH_{3} ALLOW chlorine $/ \mathrm{Cl}_{2}$ OR iodine $/ \mathrm{I}_{2}$ IGNORE conditions, e.g. u.v. DO NOT ALLOW $\mathrm{H}_{2} \mathrm{O}$ IGNORE conditions
		Total	8		

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
GROUP
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

