

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

AS CHEMISTRY

Paper 2 Organic and Physical Chemistry

Time allowed: 1 hour 30 minutes Thursday 23 May 2019 Morning Materials For Examiner's Use For this paper you must have: the Periodic Table/Data Sheet, provided as an insert (enclosed) Question Mark • a ruler with millimetre measurements 1 • a scientific calculator, which you are expected to use where appropriate. 2 Instructions 3 • Use black ink or black ball-point pen.

- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.

IB/G/Jun19/E10

	PIVIT	
	Do not write outside the box	
l.		
C are shown.		
0		

	Section A
	Answer all questions in this section.
0 1	The structures of three organic compounds A , B and C are shown.
	OH OH H
	Compound A Compound B Compound C
	These compounds can be distinguished by simple test-tube reactions.
	For each pair of compounds in questions 01.1 and 01.2 , give a reagent (or combination of reagents) that could be added separately to each compound to distinguish between them.
	State what is observed in each case.
01.1	Compounds A and B [3 marks]
	Reagent
	Observation with A
	Observation with B
0 1.2	Compounds A and C [3 marks]
	Reagent
	Observation with A
	Observation with C

6

	Promosthana reasts with potagoium avanide to form compound D	Do not write outside the box
	$CH_3CH_2Br + KCN \rightarrow CH_3CH_2CN + KBr$	
0 2 . 1	Outline the mechanism for this reaction. [2 marks]	
	[
02.2	Give the IUPAC name of D .	
02.3	Calculate the percentage atom economy for the formation of \mathbf{D} in this reaction.	
	Give your answer to the appropriate number of significant figures. [2 marks]	
	% atom economy	5

Do not write outside the

box

• extinguished the flame after a few minutes.

The results for the experiment are shown in Table 1.

Table 1	I
---------	---

Initial temperature of the water / °C	19.1
Initial mass of spirit burner and cyclohexane / g	192.730
Final mass of spirit burner and cyclohexane / g	192.100

The student determined from this experiment that the enthalpy of combustion of cyclohexane is $-1216 \text{ kJ mol}^{-1}$

Use the data to calculate the final temperature of the water in this experiment.

The specific heat capacity of water = $4.18 \text{ J K}^{-1} \text{ g}^{-1}$ The relative molecular mass (M_r) of cyclohexane = 84.0

[4 marks]

Do not write outside the box

	Final temperature of the water	°C
03.2	A data book value for the enthalpy of combustion of cyclohexane is –3920 kJ The student concluded that the temperature rise recorded in the experiment was smaller than it should have been. Suggest a practical reason for this.	mol ⁻¹ [1 mark]
	Question 3 continues on the next page	

0 3 . 3	Table 2 gives some values of standard enthalpies of combustion ($\Delta_c H^{\circ}$).					box	
		Т	able 2				
		Substance	C(s)	H ₂ (g)	C ₆ H ₁₂ (I)		
		Standard enthalpy of combustion, ∆ _c <i>H</i> [°] / kJ mol ^{−1}	-394	-286	-3920		
	Use the represer	data in Table 2 to calculate the nted by this equation	enthalpy cha	nge for the r	eaction		
		6C(s) + 6F	$H_2(g) \rightarrow C_6 H_2$	I ₁₂ (I)	[3	8 marks]	
							·
		Enthalpy	change		kJ	mol ⁻¹	8

0 4	This question is about fossil fuels.	Do not write outside the box
04.1	The petrol fraction from crude oil contains octane (C_8H_{18}).	
	Give an equation for the complete combustion of octane. [1 mark]	
04.2	The combustion of petrol in car engines produces the pollutant nitrogen monoxide.	
	Give an equation for a reaction that removes nitrogen monoxide in a catalytic converter.	
	[1 mark]	
	Question 4 continues on the next page	

Do not write outside the

box

0 4 . 3 Sulfur dioxide is produced in the combustion of fossil fuels. The total emissions of sulfur dioxide in the UK have fallen dramatically since 1970.

Sulfur dioxide is now removed from the flue gases in power stations by reaction with calcium oxide.

$$CaO + SO_2 \rightarrow CaSO_3$$

In 1970, the total UK emissions of sulfur dioxide were 6.49 million tonnes (1 tonne = 1000 kg).

Calculate the mass, in kilograms, of calcium oxide needed to react with this mass of sulfur dioxide.

Give your answer in standard form.

[2 marks]

Mass of calcium oxide

4

kg

0 5	Methanol (CH ₃ OH) is an important alcohol with many uses.
0 5.1	Draw a diagram to show how two methanol molecules interact with each other through hydrogen bonding in the liquid phase
	Include all partial charges and all lone pairs of electrons in your diagram. [3 marks]
) 5.2	The bond angle around the oxygen atom in methanol is slightly smaller than the regular tetrahedral angle of 109.5°
	Explain why this bond angle is smaller than 109.5° [1 mark]

		Do not write
0 5.3	Methanol is made by the reaction of carbon monoxide with hydrogen.	outside the box
	$CO + 2H_2 \rightleftharpoons CH_3OH$ $\Delta H = -91 \text{ kJ mol}^{-1}$	
	The reaction uses a copper-based catalyst, a pressure of 10 MPa and a temperature of 550 K	
	These conditions are used to provide a balance between equilibrium yield, reaction rate and cost.	
	Describe how the use of a catalyst, and changes in pressure and temperature, each affect equilibrium yield, reaction rate and cost.	
	[6 m	arks]

Do not write outside the box

11	
	Ľ
	[.

Turn over ►

10

IB/G/Jun19/7404/2

box

06.2	Draw the structure of F .	Do not write outside the box
	[1 mark]	
06.3	Explain why more of isomer E than isomer F is formed in this reaction.	
	[2 marks]	
		8
	Turn over for the next question	
	Turn over ►	

0 7	Propanedioic acid contains two carboxylic acid groups. It is a solid organic acid that is soluble in water.	Do not write outside the box
07.1	Draw the skeletal formula of propanedioic acid. [1 mark]	
0 7.2	Describe how to prepare 250 cm ³ of an aqueous standard solution of propanedioic acid containing an accurately measured mass of the acid. Include essential practical details in your answer. [6 marks]	

		Do not write outside the box
07.3	Calculate the mass, in mg, of propanedioic acid (<i>M</i> _r = 104.0) needed to prepare	
	250 cm ³ of a 0.00500 mol dm ⁻³ solution. [2 marks]	
	Mass of propanedioic acidmg	9

0 8	Propanal can be prepared by the oxidation of propan-1-ol with		Do not outside bo
	acidified potassium dichromate(VI).		
	An ionic equation for this reaction is		
	$3CH_{3}CH_{2}CH_{2}OH + Cr_{2}O_{7}^{2-} + 8H^{+} \rightarrow 3CH_{3}CH_{2}CHO + 2Cr^{3+} +$	7H ₂ O	
0 8.1	Calculate the minimum volume, in cm ³ , of 0.40 mol dm ⁻³ potassium dichromate(VI) solution needed to oxidise 6.0 cm ³ of propan-1-ol to propanal.		
	$M_{\rm r}$ of propan-1-ol = 60.0 Density of propan-1-ol = 0.80 g cm ⁻³	[3 marks]	
	Minimum volume	cm ³	

Do not write outside the

box

0 8.2

The reaction is done in a pear-shaped flask.

Complete the diagram to show the assembled apparatus needed to prepare propanal from propan-1-ol in this way.

Label the diagram.

[3 marks]

Turn over for the next question

Turn over ►

6

Do not write outside the box

0 9 . 3 Butane can be used as a replacement for CFCs in refrigerators. During its use, the butane is repeatedly converted from liquid to gas and then back to liquid. Liquid butane expands as it turns into a gas. Calculate the volume, in cm³, of 38.8 g of butane gas at 272 K and 101 kPa (the gas constant *R* = 8.31 J K⁻¹ mol⁻¹) (*M*_r of butane = 58.0) Calculate the volume, in cm³, of 38.8 g of liquid butane. (density of liquid butane = 0.60 g cm⁻³)

• Use your answers to calculate the factor by which butane expands in volume when it changes from a liquid to a gas.

Show your working.

[6 marks]

Volume of butane gas

cm³

Do not write outside the box

Volume of liquid butane ______cm³

Expansion factor

Turn over ►

9

	Section B	
	Answer all questions in this section	on.
Only one For each	e answer per question is allowed. In answer completely fill in the circle alongside the appro	opriate answer.
CORRECT M	METHOD WRONG METHODS 🗴 👁	
lf you wa	ant to change your answer you must cross out your orig	inal answer as shown. 💌
lf you wis as showr	sh to return to an answer previously crossed out, ring thn.	ne answer you now wish to select
You may Do not u	/ do your working in the blank space around each quest use additional sheets for this working.	tion but this will not be marked.
<u> </u>	A 'drink-driving' offence is committed if the blood ale 80 mg of ethanol per 100 cm ³ of blood. What is the concentration, in mol dm ⁻³ , of ethanol if $(M_r = 46.0)$ per 100 cm ³ of blood?	cohol level of a driver is over there are 80 mg of ethanol [1 mark]
	A 'drink-driving' offence is committed if the blood ale 80 mg of ethanol per 100 cm ³ of blood. What is the concentration, in mol dm ⁻³ , of ethanol if $(M_r = 46.0)$ per 100 cm ³ of blood? A 0.00017	cohol level of a driver is over f there are 80 mg of ethanol [1 mark]
 0	A 'drink-driving' offence is committed if the blood ale 80 mg of ethanol per 100 cm ³ of blood. What is the concentration, in mol dm ⁻³ , of ethanol if $(M_r = 46.0)$ per 100 cm ³ of blood? A 0.00017 B 0.0017	cohol level of a driver is over f there are 80 mg of ethanol [1 mark]
	A 'drink-driving' offence is committed if the blood ale 80 mg of ethanol per 100 cm ³ of blood. What is the concentration, in mol dm ⁻³ , of ethanol if $(M_r = 46.0)$ per 100 cm ³ of blood? A 0.00017 B 0.0017 C 0.017	cohol level of a driver is over f there are 80 mg of ethanol [1 mark]

1 4	How many isomers are there of C_3H_9N ?			Do not write outside the box
	, , , , , , , , , , , , , , , , , , , ,		[1 mark]	
	A 2	0		
	B 3	0		
	C 4	0		
	D 5	0		
1 5	Which equation represents a propagation step?		[1 mark]	
	$A \bullet CH_2CI + CI \bullet \rightarrow CH_2CI_2$	0		
	$\mathbf{B} \bullet \mathbf{CH}_3 + \bullet \mathbf{CH}_3 \to \mathbf{C}_2\mathbf{H}_6$	0		
	C $Cl_2 \rightarrow Cl \bullet + Cl \bullet$	0		
	D $CH_3CI + CI \bullet \rightarrow \bullet CH_2CI + HCI$	0		
1 6	Which compound can react with ammonia to produce propylamine?		[1 mark]	
	A CH ₃ CH=CH ₂	0		
	B CH ₃ CH ₂ CH ₂ OH	0		
	C CH ₃ CH ₂ CH ₂ Br	0		
	D CH ₃ CH ₂ CH ₃	0		

Which statement is not correct about $CH_2 = C(CH_3)CH_2Br$?			Do not write outside the box
		[1 mark]	
A It displays <i>E-Z</i> isomerism.	0		
B It forms an addition polymer.	0		
C It reacts with electrophiles.	0		
D It decolourises bromine water.	0		
Which compound can be oxidised to form $(CH_3)_2CHCOCH_3$?		[1 mark]	
A 2-methylpropan-1-ol	0		
B 2,2-dimethylpropanol	0		
C 2-methylbutan-2-ol	0		
D 3-methylbutan-2-ol	0		
Which species can act as a nucleophile?		[1 mark]	
A NH ₄ ⁺	0		
B CH ₃ OH	0		
C CH ₄	0		
D H⁺	0		
	 Which statement is not correct about CH₂=C(CH₃)CH₂Br? A It displays <i>E</i>-<i>Z</i> isomerism. B It forms an addition polymer. C It reacts with electrophiles. D It decolourises bromine water. Which compound can be oxidised to form (CH₃)₂CHCOCH₃? A 2-methylpropan-1-ol B 2.2-dimethylpropanol C 2-methylbutan-2-ol J 3-methylbutan-2-ol Which species can act as a nucleophile? A NH₄* B CH₃OH C CH₄ D H* 	Which statement is not correct about CH2=C(CH3)CH2Br? A It displays E-Z isomerism. B It forms an addition polymer. C It reacts with electrophiles. D It decolourises bromine water. Which compound can be oxidised to form (CH3)2CHCOCH3? Which compound can be oxidised to form (CH3)2CHCOCH3? A 2-methylpropan-1-ol B 2,2-dimethylpropanol C 2-methylbutan-2-ol D 3-methylbutan-2-ol Which species can act as a nucleophile? A NH4* B CH3OH C CH4 D H*	Which statement is not correct about CH2=C(CH3)CH2B? [t mark] A It displays E-Z isomerism B It forms an addition polymer C It reacts with electrophiles D It decolourises bromine water Which compound can be oxidised to form (CH3)2CHCOCH3? R 2-methylpropan-1-ol B 2,2-dimethylpropanol C 2-methylbutan-2-ol D 3-methylbutan-2-ol D 3-methylbutan-2-ol Which species can act as a nucleophile? Mich species can act as a nucleophile? It of H4 D H4

2 0	Which alcohol forms a mixture of alkenes when dehydrated?		Do not write outside the box
		[1 mark]	
	A propan-1-ol	0	
	B propan-2-ol	0	
	C pentan-1-ol	0	
	D pentan-2-ol	0	
2 1	Which compound has the highest boiling point?	[1 mark]	
	A CH ₃ CH ₂ CH ₂ Br	0	
	B CH ₃ CH ₂ CH ₂ F	0	
	C CH ₃ CH ₂ CHO	0	
	D CH ₃ CH ₂ COOH	0	
22	Which compound could not be produced by reacting 2-bromo-3-n sodium hydroxide?	nethylbutane with [1 mark]	
	A 2-methylbut-1-ene	0	
	B 3-methylbut-1-ene	0	
	C 2-methylbut-2-ene	0	
	D 3-methylbutan-2-ol	0	

box

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/G/Jun19/7404/2