

Mark Scheme (Results)

November 2021

Pearson Edexcel GCE In Chemistry (9CH0) Paper 3: General and Practical Principles in Chemistry

PMT

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021 Question Paper Log Number 67806 Publications Code 9CH0_03_2111_MS All the material in this publication is copyright © Pearson Education Ltd 2021

PMT

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

Using the mark scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit. () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the meaning of the phrase or the actual word is **essential** to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer		Additional Guidance				Mark
1(a)(i)	 all numbers for ³⁵Cl correct (1) all numbers for ³⁷Cl⁻ correct (1) 	Example of the second	Protons 17 17	Neutrons 18 20 led, allow (1)	Electrons 17 18 for any four n	umbers correct	(2)

Question Number	Answer	Additional Guidance	Mark
1(a)(ii)		Example of spectrum 100 90 80 70 70 60 60 50 40 90 30 90 0 90 60 70 70 71 72 73 74 75	(2)
		(1) m/z Allow any abundances in an approximate 9:6:1 ratio e.g. 56:37-38:6 as %, or 75 : 50 : 8	5

Question Number	Answer	Additional Guidance	Mark
1(b)	• KClO ₃	Allow K ⁺ ClO ₃ ⁻	(1)

Question Number	Answer	Additional Guidance	Mark
1(c)	• equation (1)	$\frac{\text{Example of equation}}{\text{Cl}(g) + e^- \rightarrow \text{Cl}^-(g)}$ Allow just e for electron	(2)
	• state symbols (1)	Stand alone mark for species on both sides of equation Ignore state symbol for electron	

Question	Answer	Additional Guidance	Mark
Number			
1(d)(i)		Either	(1)
	• identification of oxidising agent	acidified (potassium) manganate(VII) / MnO_4^- and H^+	
		Or	
		acidified hydrogen peroxide / H ₂ O ₂ and H ⁺	
		Allow H ⁺ shown in equation in (i) or (ii)	
		If the acid is specified it must be sulfuric acid	

Question Number	Answer	Additional Guidance	Mark
1(d)(ii)	• value of E°_{cell}	Either $E^{\circ}_{cell} = (+)0.15 (V)$ for acidified (potassium) manganate(VII) Or $E^{\circ}_{cell} = (+)0.41 (V)$ for acidified hydrogen peroxide No TE on any other reagent in (i)	(1)

(Total for Question 1 = 9 marks)

Question Number	Answer		Add	litional Guidance	Mark
2(a)	A description that makes reference to the following points:		Examples of reagents and observations		(2)
		(4)	Reagent	Observation	
	• reagent	(1)	any carbonate /	effervescence / fizzing / bubbles /	
		(1)	NaHCO ₃ / KHCO ₃	gas evolved that turns limewater	
	• observation	(1)	must be correct Ignore conditions e.g. hea Do not award PCl ₅ / Na	milky effervescence / fizzing / bubbles / gas evolved that gives a pop with a lighted splint characteristic smell (of an ester) for reagents but if both are given, both t wen, penalise any incorrect tests	

Question Number	Answer		Additiona	l Guidance	Mark
2(b)	A description that makes reference to two of the following points:		Examples of reagents and observ		(2)
	• reagent	(1)	Reagentbromine waterAllow bromine (in an organic	Observation orange / yellow / brown solution goes colourless	
	• corresponding observation	(1)	solvent)	Allow bromine water is decolourised	
			carboxylic acid and (concentrated) H ₂ SO ₄ / HCl / H ⁺	characteristic smell (of an ester)	
			acidified potassium manganate(VII) / permanganate	purple to colourless / decolourised	
			alkaline potassium manganate(VII)	purple to green	
			(neutral) potassium manganate(VII)	purple to brown ppt	
			acidified (potassium) dichromate((VI)) (ions)	orange to green	
			Allow names or formulae for rea must be correct	agents but if both are given, both	
			Ignore conditions e.g. heat		
			Do not award PCl ₅ / Na		
			If more than one test is given, pe	enalise any incorrect tests	

Question Number	Answer		Additional Guidar	nce	Mark
2(c)			Example of table		(3)
			Absorbance	Wavenumber range / cm ⁻¹	
	• absorbance for A	(1)	Absorbance expected in infrared	1720 – 1700	
			spectrum of A but not in B or C	Allow 1725 - 1700	
	• absorbance for B	(1)	Absorbance expected in infrared spectrum of B but not in A or C	1669 – 1645	
		(1)	Absorbance expected in infrared	1740 - 1725	
	• absorbance for C	(1)	spectrum of C but not in A or B	Allow 1740 - 1720	
			Allow values in reverse order e.g. 1700 – 1720	for A	
			If single values are given instead of a range aw within the ranges and (1) for 2 correct values	ard (2) for 3 correct values	
			Do not award a single value that occurs in two	ranges i.e 1720-1725	
			If no other mark is awarded, allow (1) for: A 3300-2500 and C 2900-2820 / 2775-2700		

(Total for Question 2 = 7 marks)

Question Number	Answer	Additional Guidance	Mark
3 (a)	• $(1s^2)2s^22p^63s^23p^1$	Allow numbers of electrons as subscripts or large numbers	(1)
		Allow p orbitals designated as x, y and z Ignore 1s ² repeated	

Question Number	Answer	Additional Guidance	Mark
3(b)(i)	dot-and-cross diagram	Example of diagram Image: Allow electrons in overlapping circles Allow electrons in overlapping circles Allow all dots / all crosses Ignore inner shell electrons, even if incorrect Ignore lines as bonds e.g. X • Do not award diagram with lone pair on Al	(1)

Question	Answer	Additional Guidance	Mark
Number			
3(b)(ii)	An answer that makes reference to the following points:	Mark independently	(2)
	 shape - trigonal planar (1) bond angle - 120° (1) 	Both words needed Allow triangular for trigonal – but not just tri Allow marks for labelled diagram	
		Note If shape is pyramidal, no mark for M1 but allow (1) for 107° No TE for any other shape	

Question Number	Answer		Additional Guidance	Mark
3(b)(iii)			$\frac{\text{Example of mechanism}}{\text{CH}_{3}\text{Cl} + \text{AlCl}_{3} \rightarrow \text{CH}_{3}^{+} + [\text{AlCl}_{4}]^{-}}$ $\overset{\bigcirc}{\longleftarrow}^{\textup{CH}_{3}} \longrightarrow \overset{}{\longleftrightarrow}^{\textup{H}}_{\textup{CH}_{3}}$ $\overset{}{\longleftrightarrow}^{\textup{H}}_{\textup{CH}_{3}} \longrightarrow \overset{}{\bigoplus}^{\textup{CH}_{3}}_{\textup{(+H^{9})}}$	(4)
	 equation for the formation of the electrophile curly arrow from on or within the circle to CH₃⁺ 	(1) (1)	Allow $AlCl_4^{-} / {}^{\delta+}CH_3 - AlCl_4^{\delta-}$ Allow curly arrow from anywhere within the hexagon Allow curly arrow to any part of CH_3^{+} , including the + charge Do not award curly arrow from outside the hexagon	
	 structure of intermediate including charge with some part of the charge within the horseshoe and horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon 		Allow dotted / dashed lines for horseshoe Do not award dotted bonds to H and CH ₃ unless clearly part of a 3D structure	
	• curly arrow from C-H bond to anywhere in the hexagon reforming the delocalised structure	(1) (1)	Ignore any involvement of AlCl ₄ ⁻ in the final step /HCl Note Correct Kekulé structures score full marks	

Question	Answer	Additional Guidance	Mark
Number			
3(c)(i)		Example of diagram	(1)
	 diagram showing two AlCl₃ molecules joined through two chlorine atoms 		
		Allow dot-and-cross diagram	
		Ignore missing arrows / direction of arrows Ignore missing lone pairs	

Question Number	Answer	Additional Guidance	Mark
3(c)(ii)	 dative (covalent) bonds or coordinate bonds 	Allow this labelled on diagram in (i) Do not award this mark if dative bonds shown as arrows starting from aluminium in (c)(i)	(1)

(Total for Question 3 = 10 marks)

Question Number	Answer	Additional Guidance	Mark
4 (a)	 curve for Experiment 2 steeper than (1) Experiment 1 and Experiment 4 and finishing at the same mass loss as Experiment 1 curve for Experiment 3 shallower than (1) Experiment 1 and finishing at the same mass loss curve for Experiment 4 steeper than (1) Experiment 1 and finishing at mass loss 1.0 g 	Examples of curves	(3)

Question Number	Answer	Additional Guidance	Mark
4(b)	 tangent drawn to curve when time = 0 tangent must touch curve for at least first 3 small squares on x axis and extend to at least 120 s calculation of gradient units 	(1) (1) (1) (1) (1) (1) (1) (1)	(3)

Question Number	Answer		Additional Guidance	Mark
4(c)	 An answer that makes reference to the following points: a diagram showing (calcium carbonate in a conical) flask attached to a gas syringe / a delivery tube passing into a container of water with an upturned measuring cylinder 	(1)	Example of diagram Example of diagram gas syringe gas syringe conical flask Ignore missing labels Ignore heat / water bath Do not award inclusion of a condenser Do not award test tube or beaker for collecting gas	(4)
	• add the hydrochloric acid and (immediately) stopper the flask	(1)	Allow carbonate added to acid and stopper the flask Allow acid in a tube / beaker in the flask and tip the flask for them to mix	
	• record the volume of gas	(1)		
	• collected at regular time intervals	(1)	Allow specified time intervals Allow collected in a specified time	
			(Total for Question 4 – 10 ma	mlra)

(Total for Question 4 = 10 marks)

Question	Answer	Additional Guidance	Mark
Number			
5(a)(i)			(2)
	• (The cation in X is) Fe^{2+} / iron(II) / Fe(II) (1)	Allow Fe ⁺²	
	• (The anion in X is) $SO_4^{2-}/sulfate(VI)$ (1)	Allow sulfate / SO ₄ ⁻² Do not award sulfite / sulfate(IV)	

Question Number	Answer		Additional Guidance	Mark
5(a)(ii)			Examples of equation	(2)
	• species and balancing	(1)	$Fe^{2+}(aq) + 2OH^{-}(aq) \rightarrow Fe(OH)_{2}(s)$ or	
	• state symbols	(1)	$[Fe(H_2O)_6]^{2+}(aq) + 2OH^-(aq) \rightarrow Fe(OH)_2(s) + 6H_2O(1)$ or $[Fe(H_2O)_6]^{2+}(aq) + 2OH^-(aq) \rightarrow Fe(OH)_2(H_2O)_4(s) + 2H_2O(1)$ Ignore missing square brackets	
			TE on cation that forms an insoluble hydroxide in Test 1	
			State symbols conditional on correct species or 'near miss' / non-ionic equation	

Question	Answer	Additional Guidance	Mark
Number			
5(a)(iii)	An answer that makes reference to the following point:		(1)
	• Fe ²⁺ is oxidised (to Fe ³⁺) by oxygen / air	Allow iron(III) hydroxide / iron(III) (ions) are formed by reaction with oxygen / air	
		TE on cation in Test 1	
		Allow just 'the precipitate / it is oxidised by oxygen / air'	

Question Number	Answer	Additional Guidance	Mark
5(a)(iv)	 An answer that makes reference to the following point: to react with / remove any carbonate / sulfite / sulfate(IV) ions or to eliminate the possibility of carbonate / sulfite / sulfate(IV) ions 	Allow to prevent any other ions forming a precipitate with barium ions / Ba ²⁺	(1)

Question Number	Answer	Additional Guidance	Mark
5(b)(i)	• (The cation in Y is) $Cu^{2+} / copper(II)$ (1)	Allow Cu ⁺² Ignore water ligands Do not award just copper / Cu	(2)
	• (The anion in Y is) $Cl^- / chloride$ (1)	Do not award just 'chlorine' / Cl	

Question Number	Answer	Additional Guidance	Mark
5(b)(ii)	• $[Cu(NH_3)_4(H_2O)_2]^{2+}$	Allow [Cu(NH ₃) ₄] ²⁺	(1)
		Allow $[Co(NH_3)_6]^{2+}$ if Co^{2+} in (i)	
		Ignore missing square brackets	

Question Number	Answer		Additional Guidance	Mark
5(b)(iii)	A description that makes reference to the following points:		If Cl^{-} / chloride / chlorine ion:	(2)
	• add dilute (aqueous) ammonia (and stir the mixture)	(1)	Allow add aqueous ammonia / NH ₃ (aq) Do not award concentrated ammonia	
	• the precipitate dissolves	(1)	Conditional on use of ammonia Ignore colourless solution	
			If Br ⁻ / bromide / bromine ion identified in Test 4: precipitate is insoluble in dilute ammonia (1) but soluble in concentrated ammonia (1)	
			If I^- / iodide / iodine ion identified in test 4: precipitate is insoluble (1) in dilute and concentrated ammonia (1)	
			Do not award addition of concentrated sulfuric acid	

(Total for Question 5 = 11 marks)

Question	Answer		Additional Guidance	Mark
Number				
6(a)(i)	An explanation that makes reference to the following points:			(2)
	• the electron density of the (benzene) ring is greater in phenol (than in benzene)	(1)		
	 because the lone pair (of electrons) on oxygen and overlaps with the pi cloud / delocalised electrons / delocalised system 	(1)	Allow lone pair (of electrons) on oxygen feeds into / donates into / interacts with the delocalised electrons / system Ignore electron pushing effect of OH	

Question Number	Answer		Additional Guidance	Mark
6(a)(ii)	An explanation that makes reference to the following points:			(2)
	• they both form hydrogen bonds	(1)	Allow M1 and M2 shown in diagrams Ignore reference to other specific types of intermolecular forces	
	 in 4-nitrophenol the hydrogen bonds join molecules in a straight chain / at both ends / at opposite ends (of the molecule so are stronger) or 		Allow 4-nitrophenol forms stronger intermolecular hydrogen bonds / forces / interactions	
	2-nitrophenol forms intramolecular hydrogen bonds / forces / interactions (so fewer intermolecular hydrogen bonds)	(1)	Allow in 2-nitrophenol the hydrogen bonds join 2 molecules together / form a dimer (so there are fewer / weaker hydrogen bonds) Allow in 2-nitrophenol the hydrogen bonds are on the same side (of the molecule)	

Question Number	Answer	Additional Guidance	Mark
6(b)			(1)
	• reducing agent / reductant	Ignore tin and concentrated hydrochloric acid	
		Do not award any other named reducing agent	

Question Number	Answer		Additional Guidance	Mark
6(c)(i)			Example of diagram filter paper (Buchner) funnel	(3)
	• side-arm flask with label 'to pump' / drawing of pump	(1)	Ignore just 'suction'	
	• (Buchner) funnel with perforations and bung around neck of funnel	(1)	Allow funnel joined to flask with 'Quickfit' joint / no gap	
	• flat filter paper (over perforations)	(1)	Do not award fluted filter paper / filter paper that extends up the sides of the funnel	

Question	Answer		Additional Guidance	Mark
Number				
6(c)(ii)	A description that makes reference to the following points:			(5)
	• dissolve crystals in the minimum (amount / volume)	(1)	Allow add / put for dissolve Do not award wash for dissolve	
	• of hot water / solvent	(1)	Penalise use of incorrect solvent once only	
	• filter hot and allow to cool	(1)	Allow M3 if hot is omitted and is mentioned in M2	
	• filter and wash with a small amount of (cold) solvent	(1)	Do not award filter to remove soluble impurities	
	• dry crystals between filter papers / in a desiccator / in a warm oven	(1)	Stand alone mark Allow other suitable methods of drying Do not award reference to crystals mixed with a drying agent	

Question Number	Answer		Additional Guidance	Mark
6(c)(iii)	An answer that makes reference to the following points:	<i></i>		(2)
	 melting temperature is lower it melts over a range of temperatures or the melting temperature is not sharp 	(1)(1)	Allow a specified range of temperatures	
	the melting temperature is not sharp			

Question	Answer	Additional Guidance	Mark
Number			
6(d)(i)	• $C_8H_9NO_2$	Allow the symbols, with subscripts, in any order e.g. C ₈ H ₉ O ₂ N Allow large numbers but not superscripts	(1)
		Ignore any other formulae as working	

Question Number	Answer	Additional Guidance	Mark
6(d)(ii)	• calculation of amount of Ce ⁴⁺ (1	$\frac{\text{Example of calculation}}{\text{amount Ce}^{4+} \text{ used } = \frac{16.5 \text{ x } 0.100}{1000} \\ = 0.00165 / 1.65 \text{ x } 10^{-3} \text{ (mol)}$	(5)
	• calculation of amount of paracetamol in 25.0 cm ³ (1	amount paracetamol in 25.0 cm ³ = $\frac{0.00165}{2}$ = 0.000825 / 8.25 x 10 ⁻⁴ (mol) TE on M1	
	• calculation of amount of paracetamol in 100.0 cm ³ (1	amount paracetamol in 100.0 cm ³ = 4 x 0.000825 = 0.00330 / 3.30 x 10 ⁻³ (mol) TE on M2	
	 calculation of molar mass of paracetamol and mass of paracetamol in 1 tablet 	1) molar mass of paracetamol, $C_8H_9NO_2$ = (8 x 12) + (9 x 1) + 14 + (2 x 16) = 151 and mass of paracetamol in 1 tablet = 0.00330 x 151 = 0.4983 g TE on M3 and (d)(i)	
	 calculation of percentage of paracetamol in 1 tablet (1 and conclusion 	1) percentage of paracetamol $= \frac{0.4983}{0.500} \times 100 = 99.66 (\%)$ and the tablet was from Brand R TE on M4 provided M4 < 0.500 g Ignore SF except 1 SF	
	I	Ignore SF except 1 SF (Total for Ouestion 6 = 21	

(Total for Question 6 = 21 marks)

Answer	Additional Guid	lance	Mark
			(1)
• mass and temperature fall correct	Mass of NaHCO ₃ used / g	5.62	
	Temperature fall / °C	(-)6.6	
•		mass and temperature fall correct Mass of NaHCO ₃ used / g	mass and temperature fall correct Mass of NaHCO ₃ used / g 5.62

Question	Answer		Additional Guidance	Mark
Number				
7(a)(ii)	 calculation of amount of NaHCO₃ and calculation of amount of hydrochloric acid 	(1)	$\frac{\text{Example of calculation}}{\text{amount NaHCO}_3} = \underbrace{5.62}_{23 + 1 + 12 + (3 \times 16)}$ $= 0.0669 \text{ (mol)}$ $\text{TE on mass of NaHCO}_3 \text{ in (a)(i)}$ and $\text{amount HCl} = \underbrace{50 \times 2.00}_{1000} = 0.10 \text{ (mol)}$ $\underbrace{1000}_{1000}$ Ignore SF including 1SF	(2)
	• 0.0669 mol NaHCO ₃ needs 0.0699 mol HCl for reaction so HCl is in excess	(1)	Allow mol ratio = 1 : 1 so HCl is in excess Allow just more moles of HCl used Allow $0.10 > 0.0669$ (mol) Allow HCl is in excess by 0.033 (mol)	

Answer		Additional Guidance	Mark
		Example of calculation	(3)
• calculation of heat absorbed	(1)	heat absorbed = $50.0 \times 4.18 \times 6.6$ = 1379.4 (J) / 1.3794 (kJ) Ignore sign	
• calculation of enthalpy change	(1)	enthalpy change = $\frac{1379.4}{0.0669}$ = 20619 (J mol ⁻¹) or = $\frac{1.3794}{0.0669}$ = 20.619 (kJ mol ⁻¹) TE on heat absorbed and amount NaHCO ₃ in (a)(ii)	
• positive sign and units	(1)	Final answer +20.6(19) kJ mol ⁻¹ or +20619 J mol ⁻¹ TE on enthalpy change Allow +19.7(06) kJ mol ⁻¹ from 0.07 mol in (a)(ii)	

Allow kJ mol⁻ / J mol⁻

Ignore SF except 1 SF Ignore incorrect / missing units in M1 and M2

Correct answer with sign and units scores (3)

Question Number 7(a)(iii) PMT

Question Number	Answer		Additional Guidance	Mark
7(b)(i)			Example of Hess cycle $2NaHCO_3(s)$ $\Delta_r H$ $Na_2CO_3(s) +$ $H_2O(1) + CO_2(g)$ $2NaCl(aq) + 2H_2O(1) + 2CO_2(g)$	(2)
	• correct species and balancing numbers in lower box	(1)	Ignore missing state symbols	
	• both arrows pointing in correct directions	(1)	Stand alone mark Ignore labels on arrows and inclusion of HCl	

		PMT

Question Number	Answer		Additional Guidance	Mark
7(b)(ii)	 expression for Δ_rH substitution of values into expression with both values in same units 	(1) (1)	$\frac{\text{Example of calculation}}{\Delta_r H = 2 \times \Delta H_1 - \Delta H_2}$ $\Delta_r H = 2 \times 20.619 - (-29.4)$ or $\Delta_r H = 2 \times 20619 - (-29 \ 400)$ M1 can be scored from values substituted into correct expression in M2 TE on ΔH_1 in (a)(iii) and expression in M1 No TE on incorrect arrows in cycle	(3)
	• calculation of $\Delta_r H$ and sign and units	(1)	$\Delta_{\rm r}H = +70.638 \text{ kJ mol}^{-1}$ or $\Delta_{\rm r}H = +70638 \text{ J mol}^{-1}$ TE on ΔH_1 in (a)(iii) and expression in M1 provided it is a +ve answer Ignore SF except 1 SF Correct answer with sign and units scores (3)	

Question	Answer	Additional Guidance	Mark
Number			
7(c)(i)		Example of calculation	(1)
	• calculation of percentage error	percentage error	
		$= (90 - 74) \times 100 = 17.778 / 17.8 / 18(\%)$	
		90	
		Allow 17.7 recurring	
		Ignore SF except 1SF	
		Do not award 17.7	

Question Number	Answer	Additional Guidance	Mark
7(c)(ii)		Example of calculation	(1)
	• calculation of percentage uncertainty using measuring cylinder and burette	percentage uncertainty using measuring cylinder = $\frac{0.5 \times 100}{50} = 1(\%)$	
		and	
		percentage uncertainty using burette = $2 \times 0.05 \times 100 = 0.2(\%)$	
		50	
		Ignore SF / \pm	

Question	Answer	Additional Guidance	Mark
Number			
7(c)(iii)	 An answer that makes reference to the following point the difference in the uncertainty in using the burette compared with the measuring cylinder is very much smaller than the % error in the value obtained (so other factors are more significant) 	Allow the uncertainty using the burette is not significantly less than using the measuring cylinder Allow uncertainty represents a spread of values whereas the error is the difference of the true value and value obtained Allow just 'hydrochloric acid / HCl is in excess' Ignore heat loss	(1)

Question Number	Answer		Additional Guidance	Mark
7(c)(iv)	A description that makes reference to the following points:		Allow different times in M1, M2 and M3 or measure the temperature at regular time intervals	(5)
	 measure the temperature of the (hydrochloric) acid every 30 s for 2¹/₂ minutes 	(1)	Allow use of a lid / additional insulation	
	• add the sodium carbonate / solid (at exactly 3 minutes)	(1)		
	• (stir and) measure the temperature (of the mixture) every 30 s for another 5 minutes	(1)		
	• plot a graph of temperature against time	(1)	M4 & M5 can be awarded from a suitably labelled sketch graph	
	• (join the two sets of points with 2 best fit straight lines and) extrapolate the lines to the time of mixing and	(1)		
	determine the maximum temperature change / rise at that time		(Total for Question $7 - 10$ m	

(Total for Question 7 = 19 marks)

Question	Answer		Additional Guidance	Mark
Number				
8 (a)	A description that makes reference to the following points:			(2)
	 (add a solution of) iodine and alkali / sodium hydroxide / potassium hydroxide / hydroxide ions (and warm) or (add a solution of) potassium iodide in sodium chlorate(I) (and warm) 	(1)	Allow names or formulae but if both are given, both must be correct	
	 (only) pentan-2-one give a (pale) yellow precipitate / ppt(e) / solid 	(1)	Stand alone mark Allow antiseptic smell Ignore observation for pentan-3-one unless also stated that it gives a yellow precipitate	

Question Number	Answer		Additional Guidance	Mark
8(b)(i)	An answer that makes reference to the following points:		Example of mechanism:	(4)
	 curly arrow from lone pair on C of CN⁻ to C of ketone group 	(1)		
	• curly arrow from C=O to, or just beyond, O	(1)		
	• intermediate	(1)	н н н б н н н он н 	
	 curly arrow from lone pair on O⁻ to H and curly arrow from H-CN bond to anywhere on CN 	(1)	H H H LN H	
			Allow C ₃ H ₇ and CH ₃ for propyl and methyl groups	
			Allow CN bond displayed	
			Ignore correct dipoles, penalise an incorrect dipole once only	
			Do not award M3 if C ⁺ is shown on intermediate	
			For M4, allow curly arrow from lone pair on O^- to H^+ ion / H_2O molecule	
			Penalise incorrect ketone once only in M3 intermediate Penalise curly arrow from -ve charge instead of lone pair once only	

PMT

Question Number	Answer	Additional Guidance	Mark
8(b)(ii)	An explanation that makes reference to the following points:		(2)
	• pentan-2-one / ketone is planar about the carbonyl (1) carbon	Allow bonds about C=O are (trigonal) planar or the carbonyl carbon is (trigonal) planar Do not award planar molecule / reference to planar intermediate / ion	
	 so the CN⁻/ nucleophile attacks (equally) from above and below / either side (of the plane) (1) 	Do not award multiple directions	

Question Number	Answer		Additional Guidance	Mark
8(c)	An answer that makes reference to the following points:displayed formula of aldehyde	(1)	Example of displayed formula: $\begin{array}{c} H \longrightarrow C \longrightarrow H \\ H \longrightarrow C \longrightarrow C \longrightarrow H \\ H \longrightarrow H \\ H \longrightarrow H \\ H \longrightarrow C \longrightarrow H \\ H \\$	(4)
			H Allow CH ₃ groups but aldehyde group must be displayed	
	• three different carbon environments indicated	(1)	Example of three carbon environments: $H \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} H$	
	• two different proton environments indicated	(1)	Example of two proton environments:	
	• no splitting as there are no hydrogens on the adjacent carbon atom(s)	(1)	Stand alone mark	

Question Number		Acceptable Answ	ers	Additional Guidance	Mark
-	logically structured reasoning. Marks are awarded is structured and sh	sses a student's ability l answer with linkages for indicative content nows lines of reasoning	to show a coherent and and fully-sustained and for how the answer	Additional Guidance Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6)
	0 The following table structure and lines		s should be awarded for		

	Number of marks awarded for structure of answer and sustained line of reasoning	In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points would score zero marks for reasoning.
Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout.	2	
Answer is partially structured with some linkages and lines of reasoning.	1	
Answer has no linkages between points and is unstructured.	0	
mark for structure of answer and sustaine	ed line of reasoning	

Ir	ndicative content	Reagents - Allow names or formulae but if both are given, both must be correct	
		Products - Allow any combination of displayed and structural formulae / skeletal formulae Allow C_4H_9 / C_3H_7 for the alkyl groups	
•	IP1 Reagents and conditions for oxidation – acidified potassium dichromate((VI)) / K ₂ Cr ₂ O ₇ and H ⁺ /H ₂ SO ₄ or acidified sodium dichromate((VI)) / Na ₂ Cr ₂ O ₇ and H ⁺ /H ₂ SO ₄ or Fehling's solution / Benedict's solution or Tollens' reagent / ammoniacal silver nitrate / Ag(NH ₃) ²⁺	Allow acidified dichromate((VI)) ions / $Cr_2O_7^{2-}$ and H^+/H_2SO_4 Allow acidified manganate((VII)) ions / MnO_4^- and H^+/H_2SO_4 Ignore reference to heat Do not award just Cu^{2+} for Fehling's / Benedict's	
•	IP2 Oxidation of aldehyde – structure of pentanoic acid	CH ₃ CH ₂ CH ₂ CH ₂ COOH	
•	IP3 Oxidation of ketone-pentan-3-one / ketone is not (easily) oxidised		
•	IP4 Reagents and conditions for reduction – lithium tetrahydridoaluminate((III)) / lithium aluminium hydride and dry ether /ethoxyethane (followed by a dilute acid) or sodium tetrahydridoborate((III)) / sodium borohydride and aqueous / methanol solution (followed by a dilute acid)	Allow lithal Ignore hydrogen and platinum (catalyst) Ignore reference to heat	
•	IP5 Reduction of aldehyde – structure of pentan-1-ol	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	
•	IP6 Reduction of ketone – structure of pentan-3-ol	CH ₃ CH ₂ CH(OH)CH ₂ CH ₃	

(Total for Question 8 = 18 marks)

Question	Answer	Additional Guidance	Mark
Number			
9(a)	An explanation that makes reference to the following points:	Any reference to equilibrium constant changing scores (0) overall	(2)
	 there are fewer moles / molecules / particles of (gas) (1) on the right 	Allow 4 moles / molecules of gas on the left and 2 moles / molecules on right	
	• so (equilibrium) yield of ammonia increases (1)	Allow 'equilibrium shifts to the right' M2 is conditional on M1 or the idea of fewer particles on the right / increasing the value of the quotient / Q	
		Allow reverse argument	

Question Number	Answer		Additional Guidance	Mark
9(b)			Example of calculation	(4)
	• rearrangement of formula (1)	$K_{\rm c} = K_{\rm p} \ge (RT)^{\Delta {\rm n}}$	
	• substitution of correct values (1)	$K_{\rm c} = 3.55 \text{ x } 10^{-2} \text{ x } (0.0821 \text{ x } 500)^2$	
	• calculation of K_c (1	·	$K_{\rm c} = 59.821$ TE on Δn	
	• units (1		Stand alone mark $dm^6 mol^{-2} \text{ or } mol^{-2} dm^6$	
			Correct value with units and no working scores (4)	
			Ignore SF except 1 SF	
			M1 and M2 can be in reverse order	

Question Number	Answer	Additional Guidance				Mark	
-	 Answer calculation of eqm moles expressions for 3 partial pressures substitution of values into K_p expression rearrangement of K_p expression calculation of total pressure and answer to 1 / 2 SF 	 (1) (1) (1) (1) (1) 	Example of cal Initial mol Eqm mol Total mol at eqm Partial pressure $K_p = 7.76 \times 10^{-5}$ $7.76 \times 10^{-5} = (2)$ $P^2 = 1126.5$ (at P = 33.564 = 34 / 30 (atn Allow any sym Allow TE throu	$\frac{N_2}{1.0} \\ 1.0 - 0.15 \\ = 0.85 \\ 0.10 \\ 0.85 \\ x P \\ 3.7 \\ (0.85 \\ x P \\ 3.7 \\ (0.87419 \\ P^2 \\ m^2) \\ m^2)$	$\frac{H_2}{3.0}$ $3.0 - (3 \times 0.15)$ $= 2.55$ $85 + 2.55 + 0.30 = 3.7$ $\frac{2.55 \times P}{3.7}$ $\frac{2}{5 \times P}$ $\frac{1}{3.7}$	NH ₃ - 0.30 0.30 x P 3.7	(5)
					some working scores (5 no working scores (4)	5)	

	PMT

Question Number	Answer		Additional Guidance	Mark
9(d)	• substitution of numbers into expression	(1)	$\frac{\text{Example of calculation}}{\ln \left(\frac{K_2}{6.76 \text{ x } 10^5}\right)} = \left(\frac{-92400}{8.31}\right) \left(\frac{1}{298} - \frac{1}{310}\right)$	(4)
	• evaluation of $\Delta H/R$ and $1/T_1 - 1/T_2$	(1)	$\ln\left(\frac{K_2}{6.76 \text{ x } 10^5}\right) = -11119.1 \text{ x } 1.299 \text{ x } 10^{-4}$ $= -1.4444$	
	• rearrangement of expression	(1)	$K_2 = 6.76 \text{ x } 10^5 \text{ x } \text{ e}^{-1.4444}$ TE on M2	
	• evaluation of expression	(1)	$K_2 = 1.59467 \text{ x } 10^5 / 159467(\text{atm}^{-2})$ TE on M3	
			Allow answer from earlier correct rounding to 2 or more SF	
			Ignore SF except 1 SF	
			Correct answer with no / some working scores (4)	

(Total for Question 9 = 15 marks)

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom