Pearson Edexcel

Mark Scheme (Results)

November 2021

Pearson Edexcel GCE
In Chemistry (9CH0)
Paper 3: General and Practical Principles in
Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Question Paper Log Number 67806
Publications Code 9CHO_03_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

Using the mark scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit. () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question	Answer		Additional Guidance				Mark (2)
1(a)(i)	- all numbers for ${ }^{35} \mathrm{Cl}$ correct - all numbers for ${ }^{37} \mathrm{Cl}^{-}$correct		Example of table				
			Particle	Protons	Neutrons	Electrons	
			${ }^{35} \mathrm{Cl}$ atom	17	18	17	
			${ }^{37} \mathrm{Cl}^{-}$ion	17	20	18	

| Question
 Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- | :---: |
| $\mathbf{1 (b)}$ | KClO_{3} | Allow
 $\mathrm{K}^{+} \mathrm{ClO}_{3}{ }^{-}$ | (1) |

Question Number	Answer	Additional Guidance	Mark	
$\mathbf{1 (c)}$	• equation	(1)	Example of equation $\mathrm{Cl}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}(\mathrm{g})$ Allow just e for electron	
	• state symbols	(1)	Stand alone mark for species on both sides of equation Ignore state symbol for electron	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 (d) (i)}$	- identification of oxidising agent	Either acidified (potassium) manganate(VII) $/ \mathrm{MnO}_{4}^{-}$ Or and H^{+} acidified hydrogen peroxide $/ \mathrm{H}_{2} \mathrm{O}_{2}$ and H^{+}	(1)
Allow H^{+}shown in equation in (i) or (ii)			
If the acid is specified it must be sulfuric acid			

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 (d) (i i) ~}$	• value of $E_{\text {cell }}^{\theta}$	Either $E_{\text {cell }}=(+) 0.15(V)$ for acidified (potassium) manganate(VII)	(1)
		Or $E_{\text {cell }}=(+) 0.41(V)$ for acidified hydrogen peroxide No TE on any other reagent in (i)	

Question Number	Answer	Additional Guidance	Mark
2(a)	A description that makes reference to the following points: - reagent - observation	Examples of reagents and observations Allow names or formulae for reagents but if both are given, both must be correct Ignore conditions e.g. heat Do not award $\mathrm{PCl}_{5} / \mathrm{Na}$ If more than one test is given, penalise any incorrect tests	(2)

Question Number	Answer	Additional Guidance		Mark
2(b)	A description that makes reference to two of the following points: - reagent - corresponding observation	Examples of reagents and observations		(2)
		Reagent	Observation	
		bromine water Allow bromine (in an organic solvent)	orange / yellow / brown solution goes colourless Allow bromine water is decolourised	
		carboxylic acid and (concentrated) $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HCl} /$ H^{+}	characteristic smell (of an ester)	
		acidified potassium manganate(VII) / permanganate	purple to colourless / decolourised	
		alkaline potassium manganate(VII)	purple to green	
		(neutral) potassium manganate(VII)	purple to brown ppt	
		acidified (potassium) dichromate((VI)) (ions)	orange to green	
		Allow names or formulae for reagents but if both are given, both must be correct		
		Do not award $\mathrm{PCl}_{5} / \mathrm{Na}$		
		If more than one test is given, penalise any incorrect tests		

Question	Answer	Additional Guidance	Mark
2(c)	- absorbance for \mathbf{A}	Example of table	(3)
		Absorbance Wavenumber range $/ \mathrm{cm}^{-1}$	
		Absorbance expected in infrared spectrum of A but not in B or C 1720-1700 Allow 1725-1700	
	- absorbance for \mathbf{B}	Absorbance expected in infrared spectrum of B but not in A or C $1669-1645$	
	- absorbance for \mathbf{C}	Absorbance expected in infrared spectrum of \mathbf{C} but not in \mathbf{A} or \mathbf{B} $1740-1725$ Allow 1740-1720	
		If single values are given instead of a range award (2) for 3 correct values within the ranges and (1) for 2 correct values	
		Do not award a single value that occurs in two ranges i.e 1720-1725 If no other mark is awarded, allow (1) for: A 3300-2500 and C 2900-2820 / 2775-2700	

(Total for Question 2 = 7 marks)

Question Number	Answer	Additional Guidance	Mark
3(a)	• $\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$	Allow numbers of electrons as subscripts or large numbers	(1)
		Allow p orbitals designated as x, y and z Ignore $1 s^{2}$ repeated	

Question Number	Answer	Additional Guidance	Mark
3(b)(i)	- dot-and-cross diagram	Example of diagram Allow electrons in overlapping circles Allow all dots / all crosses Ignore inner shell electrons, even if incorrect Ignore lines as bonds e.g. \underline{x} Do not award diagram with lone pair on Al	(1)

Question Number	Answer	Additional Guidance	Mark
3(b)(ii)	An answer that makes reference to the following points: - shape - trigonal planar - bond angle -120°	Mark independently Both words needed Allow triangular for trigonal - but not just tri Allow marks for labelled diagram Note If shape is pyramidal, no mark for M1 but allow (1) for 107° No TE for any other shape	(2)

Question Number	Answer	Additional Guidance	Mark
3(b)(iii)	- equation for the formation of the electrophile - curly arrow from on or within the circle to $\mathrm{CH}_{3}{ }^{+}$ - structure of intermediate including charge with some part of the charge within the horseshoe and horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon - curly arrow from C-H bond to anywhere in the hexagon reforming the delocalised structure	Example of mechanism	(4)
		$\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3}^{+}+\left[\mathrm{AlCl}_{4}\right]$	
		 $1+\mathrm{H} \mid$	
		Allow $\mathrm{AlCl}_{4}^{-} /{ }^{\delta+} \mathrm{CH}_{3}-\mathrm{AlCl}_{4}{ }^{\delta-}$	
		Allow curly arrow from anywhere within the hexagon Allow curly arrow to any part of $\mathrm{CH}_{3}{ }^{+}$, including the + charge Do not award curly arrow from outside the hexagon	
		Allow dotted / dashed lines for horseshoe Do not award dotted bonds to H and CH_{3} unless clearly part of a 3D structure	
		Ignore any involvement of AlCl_{4}^{-}in the final step /HCl	
		Note Correct Kekulé structures score full marks	

Question Number	Answer	Additional Guidance	Mark
3(c)(i)	diagram showing two AlCl_{3} molecules joined through two chlorine atoms	Example of diagram	
		Allow dot-and-cross diagram	
Ignore missing arrows / direction of arrows			
Ignore missing lone pairs			

Question Number	Answer	Additional Guidance	Mark
3(c)(ii)	- dative (covalent) bonds or coordinate bonds	Allow this labelled on diagram in (i) Do not award this mark if dative bonds shown as arrows starting from aluminium in (c)(i)	

Question Number	Answer	Additional Guidance	Mark
4(a)	- curve for Experiment 2 steeper than Experiment 1 and Experiment 4 and finishing at the same mass loss as Experiment 1 - curve for Experiment $\mathbf{3}$ shallower than Experiment 1 and finishing at the same mass loss - curve for Experiment 4 steeper than Experiment 1 and finishing at mass loss 1.0 g	Examples of curves Allow curve for Experiment $\mathbf{4}$ steeper than Experiments 1 and 2 and finishing at mass loss 1.0 g	(3)

Question Number	Answer	Additional Guidance	Mark
4(c)	An answer that makes reference to the following points: - a diagram showing (calcium carbonate in a conical) flask attached to a gas syringe / a delivery tube passing into a container of water with an upturned measuring cylinder - add the hydrochloric acid and (immediately) stopper the flask - record the volume of gas - collected at regular time intervals	Example of diagram Ignore missing labels Ignore heat / water bath Do not award inclusion of a condenser Do not award test tube or beaker for collecting gas Allow carbonate added to acid and stopper the flask Allow acid in a tube / beaker in the flask and tip the flask for them to mix Allow specified time intervals Allow collected in a specified time	(4)

(Total for Question 4 = 10 marks)

Question Number	Answer	Additional Guidance	Mark	
$\mathbf{5 (a) (i)}$	• (The cation in \mathbf{X} is) $\mathrm{Fe}^{2+} / \mathrm{iron(II)} / \mathrm{Fe}(\mathrm{II})$	(1)	Allow Fe^{+2}	(2)
	• (The anion in \mathbf{X} is) $\mathrm{SO}_{4}{ }^{2-} /$ sulfate(VI)	(1)	Allow sulfate $/ \mathrm{SO}_{4}{ }^{-2}$ Do not award sulfite $/$ sulfate(IV)	

Question Number	Answer	Additional Guidance	Mark
5(a)(iii)	An answer that makes reference to the following point:	Allow iron(III) hydroxide / iron(III) (ions) are formed by reaction with oxygen / air TE on cation in Test 1 Allow just 'the precipitate / it is oxidised by oxygen / air'	(1)

Question Number	Answer	Additional Guidance	Mark
5(a)(iv)	An answer that makes reference to the following point: to react with / remove any carbonate / sulfite / sulfate(IV) ions or to eliminate the possibility of carbonate / sulfite / sulfate(IV) ions	Allow to prevent any other ions forming a precipitate with barium ions / Ba ${ }^{2+}$	(1)

Question Number	Answer	Additional Guidance	Mark	
$\mathbf{5 (b) (i)}$	(The cation in \mathbf{Y} is) $\mathrm{Cu}^{2+} / \operatorname{copper(II)}$	(1)	Allow Cu^{+2} Ignore water ligands Do not award just copper / Cu	(2)
	(The anion in \mathbf{Y} is) $\mathrm{Cl}^{-} /$chloride	(1)	Do not award just 'chlorine' / Cl	

Question Number	Answer	Additional Guidance	Mark
5(b)(ii)	• $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$	Allow $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$	
		Allow $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ if Co^{2+} in (i)	
		Ignore missing square brackets	(1)

(Total for Question 5 = 11 marks)

| Question
 Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :---: | :--- | :---: |
| $\mathbf{6 (a) (i)}$ | An explanation that makes reference to the following
 points:
 - the electron density of the (benzene) ring is greater in
 phenol (than in benzene) | (1) | (2) |
| | because the lone pair (of electrons) on oxygen
 and
 overlaps with the pi cloud / delocalised electrons /
 delocalised system | Allow lone pair (of electrons) on oxygen feeds into
 / donates into / interacts with the delocalised
 electrons / system
 Ignore electron pushing effect of OH | |

Question Number	Answer	Additional Guidance	Mark	
6(a)(ii)	An explanation that makes reference to the following points:	(1)	Allow M1 and M2 shown in diagrams Ignore reference to other specific types of intermolecular forces	(2)
	- they both form hydrogen bonds in 4-nitrophenol the hydrogen bonds join molecules in molecule so are stronger) or 2-nitrophenol forms intramolecular hydrogen bonds / at opposite ends (of the forces / interactions (so fewer intermolecular hydrogen bonds)	(1)	Allow 4-nitrophenol forms stronger intermolecular hydrogen bonds / forces / interactions	
Allow in 2-nitrophenol the hydrogen bonds join 2 molecules together / form a dimer (so there are fewer / weaker hydrogen bonds) Allow in 2-nitrophenol the hydrogen bonds are on the same side (of the molecule)				

Question Number	Answer	Additional Guidance	Mark
$\mathbf{6 (b)}$	• reducing agent / reductant	Ignore tin and concentrated hydrochloric acid Do not award any other named reducing agent	(1)

Question Number	Answer	Additional Guidance	Mark
6(c)(i)	- side-arm flask with label 'to pump’ / drawing of pump - (Buchner) funnel with perforations and bung around neck of funnel - flat filter paper (over perforations)	Example of diagram Ignore just 'suction' Allow funnel joined to flask with 'Quickfit' joint / no gap Do not award fluted filter paper / filter paper that extends up the sides of the funnel	(3)

Question Number	Answer		Additional Guidance	Mark
6(c)(ii)	A description that makes reference to the following points: - dissolve crystals in the minimum (amount / volume) - of hot water / solvent - filter hot and allow to cool - filter and wash with a small amount of (cold) solvent - dry crystals between filter papers / in a desiccator / in a warm oven	(1) (1) (1) (1) (1)	Allow add / put for dissolve Do not award wash for dissolve Penalise use of incorrect solvent once only Allow M3 if hot is omitted and is mentioned in M2 Do not award filter to remove soluble impurities Stand alone mark Allow other suitable methods of drying Do not award reference to crystals mixed with a drying agent	(5)

Question Number	Answer	Additional Guidance	Mark	
(c)(iii)	An answer that makes reference to the following points:	(1)		(2)
	• melting temperature is lower - it melts over a range of temperatures or the melting temperature is not sharp	(1)	Allow a specified range of temperatures	

| Question
 Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: | :---: |
| $\mathbf{6 (d) (i)}$ | $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$ | Allow the symbols, with subscripts, in any order
 e.g. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~N}$
 Allow large numbers but not superscripts | (1) |

(Total for Question 6 = 21 marks)

| Question
 Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- | :---: |
| 7(a)(i) | • mass and temperature fall correct | | (1) |
| | | Mass of NaHCO_{3} used $/ \mathrm{g}$ | 5.62 |
| | Temperature fall $/{ }^{\circ} \mathrm{C}$ | $(-) 6.6$ | |

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Answer \& \& Additional Guidance \& Mark \\
\hline 7(a)(ii) \& \begin{tabular}{l}
- calculation of amount of \(\mathrm{NaHCO}_{3}\) \\
and \\
calculation of amount of hydrochloric acid \\
- 0.0669 mol NaHCO 3 needs 0.0699 mol HCl for reaction so HCl is in excess
\end{tabular} \& (1)

(1) \& | $\begin{aligned} \frac{\text { Example of calculation }}{\text { amount } \mathrm{NaHCO}_{3}=} & \\ & \\ & =0.0669(\mathrm{~mol}) \end{aligned}$ |
| :--- |
| TE on mass of NaHCO_{3} in (a)(i) |
| and |
| amount $\mathrm{HCl}=\frac{50 \times 2.00}{1000}=0.10(\mathrm{~mol})$ |
| Ignore SF including 1SF |
| Allow mol ratio $=1: 1$ so HCl is in excess |
| Allow just more moles of HCl used |
| Allow $0.10>0.0669$ (mol) |
| Allow HCl is in excess by 0.033 (mol) | \& (2)

\hline
\end{tabular}

Question Number	Answer	Additional Guidance	Mark
7(b)(i)	- correct species and balancing numbers in lower box - both arrows pointing in correct directions	Ignore missing state symbols Stand alone mark Ignore labels on arrows and inclusion of HCl	(2)

Question Number	Answer	Additional Guidance	Mark
7(b)(ii)	- expression for $\Delta_{r} H$ - substitution of values into expression with both values in same units - calculation of $\Delta_{r} H$ (1) and sign and units	Example of calculation $\Delta_{\mathrm{r}} H=2 \mathrm{x} \Delta H_{1}-\Delta H_{2}$ $\Delta_{\mathrm{r}} H=2 \times 20.619-(-29.4)$ or $\Delta_{\mathrm{r}} H=2 \times 20619-(-29400)$ M1 can be scored from values substituted into correct expression in M2 TE on ΔH_{1} in (a)(iii) and expression in M1 No TE on incorrect arrows in cycle $\Delta_{\mathrm{r}} H=+70.638 \mathrm{~kJ} \mathrm{~mol}^{-1}$ or $\Delta_{\mathrm{r}} H=+70638 \mathrm{~J} \mathrm{~mol}^{-1}$ TE on ΔH_{1} in (a)(iii) and expression in M1 provided it is a +ve answer Ignore SF except 1 SF Correct answer with sign and units scores (3)	(3)

Question Number	Answer	Additional Guidance	Mark
7(c)(i)	calculation of percentage error	Example of calculation percentage error $=\left(\frac{90-74)}{90} \times 100=17.778 / 17.8 / 18(\%)\right.$ Allow 17.7 recurring	(1)
		Ignore SF except 1 SF	
		Do not award 17.7	

Question Number	Answer	Additional Guidance	Mark
7(c)(ii)	calculation of percentage uncertainty using measuring cylinder and burette	Example of calculation percentage uncertainty using measuring cylinder $=\frac{0.5 \times 100}{50}=1(\%)$ and percentage uncertainty using burette $=\frac{2 \times 0.05}{50} \times 100=0.2(\%)$ Ignore SF $/ \pm$	(1)

Question Number	Answer	Additional Guidance	Mark
7(c)(iii)	An answer that makes reference to the following point - the difference in the uncertainty in using the burette compared with the measuring cylinder is very much smaller than the \% error in the value obtained (so other factors are more significant)	Allow the uncertainty using the burette is not significantly less than using the measuring cylinder	Allow uncertainty represents a spread of values whereas the error is the difference of the true value and value obtained

Question Number	Answer	Additional Guidance	Mark
7(c)(iv)	A description that makes reference to the following points: - measure the temperature of the (hydrochloric) acid every 30 s for $21 / 2$ minutes - add the sodium carbonate / solid (at exactly 3 minutes) - (stir and) measure the temperature (of the mixture) every 30 s for another 5 minutes - plot a graph of temperature against time - (join the two sets of points with 2 best fit straight lines and) extrapolate the lines to the time of mixing and determine the maximum temperature change / rise at that time	Allow different times in M1, M2 and M3 or measure the temperature at regular time intervals Allow use of a lid / additional insulation M4 \& M5 can be awarded from a suitably labelled sketch graph	(5)

Question Number	Answer	Additional Guidance	Mark
8 (a)	A description that makes reference to the following points: - (add a solution of) iodine and alkali / sodium hydroxide / potassium hydroxide / hydroxide ions (and warm) or (add a solution of) potassium iodide in sodium chlorate(I) (and warm) - (only) pentan-2-one give a (pale) yellow precipitate / ppt(e) / solid	Allow names or formulae but if both are given, both must be correct Stand alone mark Allow antiseptic smell Ignore observation for pentan-3-one unless also stated that it gives a yellow precipitate	(2)

Question Number	Answer	Additional Guidance	Mark
8(b)(i)	An answer that makes reference to the following points: - curly arrow from lone pair on C of CN^{-} to C of ketone group - curly arrow from $\mathrm{C}=\mathrm{O}$ to, or just beyond, O - intermediate - curly arrow from lone pair on O^{-}to H and curly arrow from $\mathrm{H}-\mathrm{CN}$ bond to anywhere on CN	Example of mechanism: Allow $\mathrm{C}_{3} \mathrm{H}_{7}$ and CH_{3} for propyl and methyl groups Allow CN bond displayed Ignore correct dipoles, penalise an incorrect dipole once only Do not award M3 if C^{+}is shown on intermediate For M4, allow curly arrow from lone pair on O^{-}to H^{+}ion / $\mathrm{H}_{2} \mathrm{O}$ molecule Penalise incorrect ketone once only in M3 intermediate Penalise curly arrow from -ve charge instead of lone pair once only	(4)

Question Number	Answer	Additional Guidance	Mark	
8(b)(ii)	An explanation that makes reference to the following points: pentan-2-one / ketone is planar about the carbonyl carbon	(1)	Allow bonds about C=O are (trigonal) planar or the carbonyl carbon is (trigonal) planar	
	(2) so the $\mathrm{CN}^{-} /$nucleophile attacks (equally) from above and below / either side (of the plane)	Do award planar molecule / reference to planar intermediate / ion	(1)	

Question Number	Answer	Additional Guidance	Mark
8(c)	An answer that makes reference to the following points: - displayed formula of aldehyde - three different carbon environments indicated - two different proton environments indicated - no splitting as there are no hydrogens on the adjacent carbon atom(s)	Example of displayed formula: Allow CH_{3} groups but aldehyde group must be displayed Example of three carbon environments: Example of two proton environments: Stand alone mark	(4)

Question Number	Acceptable Answers	Additional Guidance	Mark
8(d)*	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content. The following table shows how the marks should be awarded for structure and lines of reasoning.	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6)

Indicative content

Reagents - Allow names or formulae but if both are given, both must be correct

Products - Allow any combination of displayed and structural formulae / skeletal formulae
Allow $\mathrm{C}_{4} \mathrm{H}_{9} / \mathrm{C}_{3} \mathrm{H}_{7}$ for the alkyl groups

Allow acidified dichromate((VI)) ions / $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ and $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{SO}_{4}$
Allow acidified manganate((VII)) ions / MnO_{4}^{-} and $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{SO}_{4}$
Ignore reference to heat
Do not award just Cu^{2+} for Fehling's / Benedict's
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$

Allow lithal
Ignore hydrogen and platinum (catalyst)
Ignore reference to heat
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$

- IP6 Reduction of ketone - structure of pentan-3-ol

Question Number	Answer		Additional Guidance	Mark
9(a)	An explanation that makes reference to the following points: - there are fewer moles / molecules / particles of (gas) on the right - so (equilibrium) yield of ammonia increases	(1) (1)	Any reference to equilibrium constant changing scores (0) overall Allow 4 moles / molecules of gas on the left and 2 moles / molecules on right Allow 'equilibrium shifts to the right' M2 is conditional on M1 or the idea of fewer particles on the right / increasing the value of the quotient / Q Allow reverse argument	(2)

Question Number	Answer		Additional Guidance	Mark
9(b)	- rearrangement of formula - substitution of correct values - calculation of K_{c} - units	(1) (1) (1) (1)	Example of calculation $\begin{aligned} & K_{\mathrm{c}}=K_{\mathrm{p}} \times(R T)^{\Delta \mathrm{n}} \\ & K_{\mathrm{c}}=3.55 \times 10^{-2} \times(0.0821 \times 500)^{2} \\ & K_{\mathrm{c}}=59.821 \\ & \mathrm{TE} \text { on } \Delta \mathrm{n} \\ & \text { Stand alone mark } \\ & \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{or} \mathrm{~mol}^{-2} \mathrm{dm}^{6} \end{aligned}$ Correct value with units and no working scores (4) Ignore SF except 1 SF M1 and M2 can be in reverse order	(4)

Question Number	Answer		Additional Guidance	Mark
9(d)	- substitution of numbers into expression - evaluation of $\Delta H / R$ and $1 / T_{1}-1 / T_{2}$ - rearrangement of expression - evaluation of expression	(1) (1) (1) (1)	Example of calculation $\ln \left(\frac{K_{2}}{6.76 \times 10^{5}}\right)=(-\underline{-92400}-1.31)\left(\frac{1}{298}-\frac{1}{310}\right)$ $\begin{aligned} \ln \left(\frac{K_{2}}{6.76 \times 10^{5}}\right) & =-11119.1 \times 1.299 \times 10^{-4} \\ & =-1.4444 \end{aligned}$ $K_{2}=6.76 \times 10^{5} \mathrm{x} \mathrm{e}^{-1.4444}$ TE on M2 $K_{2}=1.59467 \times 10^{5} / 159467\left(\mathrm{~atm}^{-2}\right)$ TE on M3 Allow answer from earlier correct rounding to 2 or more SF Ignore SF except 1 SF Correct answer with no / some working scores (4)	(4)

