Pearson Edexcel

Mark Scheme (Results)

November 2021

Pearson Edexcel GCE
In Chemistry (8CH0)
Paper 2: Core Organic and Physical Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Question Paper Log Number 67084
Publications Code 8CHO_02_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge.
Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Mark
1	The only correct answer is C (E/Z) \mathbf{A} is not correct because there are no differences in the carbon chain \mathbf{B} is not correct because the functional group $(C=C)$ is in the same position in both molecules D is not correct because cis/trans isomerism does not assign groups in order of priority	(1)

(Total for Question 1 = 1 mark)

Question Number	Answer		Additional Guidance	Mark
2(a)(i)	An answer that makes reference to the following points: - correct elements in the lower box $\left(\mathrm{P}(\mathrm{s}), \mathrm{Cl}_{2}(\mathrm{~g})\right)$ - correct moles of each element, P(s) and $21 / 2 \mathrm{Cl}_{2}(\mathrm{~g})$ - arrows correctly labelled $\left(\Delta_{f} H\left[\mathrm{PCl}_{5}\right], \Delta_{\mathrm{f}} H\left[\mathrm{PCl}_{3}\right]\right)$	(1) (1) (1)	Penalise missing states only once (M1) States are required Allow $\mathrm{P}_{4}(\mathrm{~s})$ Ignore balancing numbers for M1 Allow $1 / 4 \mathrm{P}_{4}(\mathrm{~s})$ Ignore state symbols (if given) Ignore state symbols (if given) on arrows	(3)

Question Number	Answer	Additional Guidance	Mark	
2(a)(ii)	• use of $\sum\left(\Delta_{f} H[\right.$ products $]-\sum\left(\Delta_{f} H[\right.$ reactants $]$	(1)	Example of calculation $(-319.7+30.5)-(-443.5+64.9)$ Allow correct sums $(-289.2$ and -378.6$)$ but must be negative $=+89.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Sign and units must be shown Allow TE from M1 (for omission of $\Delta_{v} H$ data $\left(+123.8 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Correct answer with no working scores (2)	(2)

Question Number	Answer	Additional Guidance	Mark
2(b)	An explanation that makes reference to the following points:		(2)

- (increasing the temperature) will move the equilibrium position to the right/ in forward direction - because the (forward) reaction is endothermic	Allow more products will form M2 conditional on M1

Question Number	The only correct answer is A		
$\mathbf{3}$		Mark	(1)

Question Number	Answer	Additional Guidance	Mark
4(a)	- correct equation	$\begin{aligned} & \text { Example of equation } \\ & 2 \mathrm{CaSO} 4 \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow 2 \mathrm{CaSO}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ & \mathbf{O R} \\ & \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{CaSO}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})+11 / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{aligned}$ Allow multiples Allow $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ or $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	(1)

Question Number	Answer	Mark
4(b)	The only correct answer is D (endothermic, dehydration)	(1)
	A is not correct because hydration involves adding water	

Question Number	Answer	Additional Guidance	Mark
4(c)(i)	- calculation of moles of $\mathrm{CaSO}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ - calculation of volume (or mass) of water required (1)	Example of calculation $10.00 \mathrm{~g} \mathrm{CaSO}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}=10.00 \div 145.2 \mathrm{~mol}=0.06887 \mathrm{~mol}$ \quad Allow 0.069(moles of water required $=0.06887 \times 1.5=0.1033 \mathrm{~mol}$)volume of water required $=0.1033 \times 18 \div 1.00=1.86 \mathrm{~cm}^{3}$Allow 1.86 gIgnore SF except 1 SFCorrect answer with no working scores (2)	(2)

		Allow calculation using multiples of these moles (still gets same final answer scores 2) Allow alternative correct calculations: e.g. comparison of moles of $\mathrm{CaSO}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ with moles of water in 10.00 g.	

		Correct answer with no working scores (4) Allow TE throughout and from 4ci (for moles $\left.\mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}\right)$	

Question Number	Answer	Additional Guidance	Mark	
4(c)(iii)	• selection of thermometer	(1)	$\underline{\text { Example of calculation }}$	(2)
	• calculation of percentage uncertainty	(1)	$\frac{2 \times 0.5 \times 100}{2.8}=35.7 / 36 / 40(\%)$ Allow selection of measuring cylinder and percentage uncertainty is 5\%, scores (1) mark Do not award selection of balance Ignore SF	

Question Number	Answer	Additional Guidance	Mark	
5(a)		(1)	Example of equation $2 \mathrm{CH}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}+4 \mathrm{H}_{2} \mathrm{O}$	(2)
	• correct species	(1)	Allow multiples of correct equation Ignore states (if shown)	

Question Number	Answer	Additional Guidance	Mark
5(b)(i)	An explanation that makes reference to the following points: - because sulfur compounds/impurities in fuel and react with oxygen (from air) -because nitrogen in the air and reacts with oxygen (from air)\quad (1)	Penalise omission of oxygen (from air) once only	(2)

Question Number	Answer	Additional Guidance	Mark
5(b)(ii)	An explanation that makes reference to the following points:		(2)
	- (because although sulfur dioxide is removed) carbon dioxide is produced.	(1) Do not award more energy/fossil fuel burned to heat the reaction carbon dioxide is a greenhouse gas (and must therefore be removed/stored)	Allow carbon dioxide adds to/causes global warming

Question Number	Answer	Additional Guidance	Mark
5(c)	- correct dot-and-cross diagram	Example of dot-and-cross diagrams	(1)
		xx -. xx	
		$x x \quad O \quad: \quad S \underset{\underset{x}{x}}{x} \quad 0$	
		xx ${ }^{\text {xx }}$	
		OR	
		xx $\quad . \quad$ xx	
		xx xx	
		Allow all dots or crosses	
		Do not allow 3 electron S-O bonds	
		Ignore lines shown as bonds	
		Ignore inner electrons if shown, provided outer electrons are clear	

Question Number	Answer	Additional Guidance	Mark	
6(a)	•tangent drawn on graph at 50 s	(1)	(1)	Example of calculation vertical axis $0.055 \mathrm{~mol} \mathrm{dm}^{-3}$ horizontal axis 110 s rate $=0.055 \div 110=(-) 5.0 \times 10^{-4}$ Allow answers in the range $(-) 4.0-(-) 6.0 \times 10^{-4}$ Ignore missing negative sign $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$ $\mathrm{~mol} \mathrm{dm}^{-3} / \mathrm{s}$ $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{per} \mathrm{s}$

Question Number	Answer	Mark
$\mathbf{6 (b)}$	The only correct answer is D (nucleophilic substitution)	(1)
	A is not correct because there is more than one product	
	B is not correct because substitution occurs, not elimination	
	C is not correct because free radicals are not involved in this reaction	

Question Number	Answer	Additional Guidance	Mark	
$\mathbf{6 (c) (i)}$	an answer that makes reference to the following points:		(2)	
	• cream precipitate/precipitation	(1)	Allow off-white / very pale yellow for cream Do not allow just yellow Allow ppt / ppte / solid / crystals for precipitate Ignore silver bromide Ignore state (if shown)	

Question Number	Answer	Mark
$\mathbf{6 (c) (i i)}$	The only correct answer is C (Z, Y, X)	(1)
	\mathbf{A} is not correct because hydrolysis of primary halogenoalkane (\boldsymbol{X}) is the slowest	
	\mathbf{B} is not correct because hydrolysis of primary halogenoalkane (\boldsymbol{X}) is the slowest	
\mathbf{D} is not correct because hydrolysis of primary halogenoalkane (\boldsymbol{X}) is the slowest		

Question Number	Answer	Additional Guidance	Mark	
$\mathbf{6 (d) (i)}$	An answer that makes reference to the following points:	Mark independently	(2)	
	• potassium hydroxide / KOH	(1)	Allow sodium hydroxide / NaOH	
	• alcohol / ethanol and reflux	(1)	Allow just 'heat' in place of reflux Do not award aqueous ethanol	

Question Number	Answer	Additional Guidance	Mark
6(d)(ii)	- repeat unit	Example of repeat unit Allow non-displayed methyl groups (- CH_{3}) Ignore connectivity of the methyl group Allow n outside brackets Ignore missing brackets / round brackets	(1)

Question Number	Answer		Additional Guidance	Mark
6(d)(iii)	- curly arrow from double bond to H of HBr and correct structure of 2-methylpropene - curly arrow from $\mathrm{H}-\mathrm{Br}$ bond to Br atom and correct dipole on HBr molecule - intermediate with + on correct Carbon and Br^{-} - lone pair on Br^{-} and curly arrow from lone pair to C^{+}	(1) (1) (1) (1)	Example of mechanism incorrect structure of 2-methylpropene loses M1 only + on incorrect carbon loses M3 only	(4)

Question Number	Answer	Additional Guidance	Mark
7(a)	An answer that makes reference to the following point: (a series of compounds each containing the) same functional group / same chemical properties and the same general formula	Allow one differs from the next by one CH_{2} unit	

Question Number	Answer	Additional Guidance	Mark
7(b)	An answer that makes reference to the following points: - methanol hydrogen bonds to water - at least one lone pair on an oxygen atom and an approximate 180° OHO bond angle - strength of (all) intermolecular forces between methanol and water is approximately the same as those in water and methanol or strength/extent of H -bonding between methanol and water is same/> that between water/methanol molecules	Example of diagram Accept one labelled hydrogen bond (min) between the O or H of methanol and a correct atom in water. Minimum of one lone pair must be shown on the relevant O atom Ignore reference to the methyl group Allow any mention of H -bond between methanol and water for M11720-1700 cm ${ }^{-1}$	(3)

Question Number	Answer	Additional Guidance	Mark
8(a)			(1)

Question Number	Answer	Additional Guidance	Mark
8(b)(i)	An answer that makes reference to the following points: - name - displayed formula	Example of displayed formula Āllow CH_{2} groups Allow skeletal formula Do not award molecular formula	(2)

Question Number	Answer	Additional Guidance	Mark	
8(b)(ii)	An answer that makes reference to the following points:			
- O-H bond (stretching) $3750-3200 \mathrm{~cm}^{-1}$ in cyclohexanol is not present in cyclohexanone $/$ disappears (when cyclohexanol reacts).	(1)	Allow a range within the specified range	(2)	
- C=O bond (stretching) $1720-1700 \mathrm{~cm}^{-1}$ appears in cyclohexanone	(1)	Allow $1725-1700 \mathrm{~cm}^{-1}$ Do not allow $1740-1720 \mathrm{~cm}^{-1}$ (aldehyde)		

Question Number	Answer	Additional Guidance	Mark
8(b)(iii)	highest $m / z=M_{\mathrm{r}}=98$	Check, answer may be shown on mass spectrum Do not accept just ' 98 ' with no supporting evidence Allow peak furthest to the right / molecular ion peak is 98	(1)

Question Number	Answer	Mark
$\mathbf{8 (c) (\mathbf { i })}$	The only correct answer is B (elimination)	(1)
	A is not correct because the reaction involves only one reacting molecule (cyclohexanol)	
	C is not correct because there is no change in the oxidation numbers of any of the elements involved	
	D is not correct because nothing has been substituted.	

Question Number	Answer		Additional Guidance	Mark
8(c)(ii)	- calculation of mass and mol of cyclohexanol - calculation of mol of cyclohexene - calculation of mass of cyclohexene - calculation of volume of cyclohexene	(1) (1) (1) (1)	Example of calculation Mass cyclohexanol $=10.0 \times 0.962=9.62(\mathrm{~g})$ and Mol of cyclohexanol $=9.62 \div 100=0.0962(\mathrm{~mol})$ Mol of cyclohexene $=0.63 \times 0.0962=0.060606(\mathrm{~mol})$ Mass of cyclohexene $=0.060606 \times 82.0=4.9697(\mathrm{~g})$ Volume of cyclohexene $=4.9697 \div 0.811=6.1279$ $=6 / 6.1 / 6.13\left(\mathrm{~cm}^{3}\right) / 6.1 \times 10^{-3} \mathrm{dm}^{3}$ Ignore SF in final answer Allow TE at each stage Correct answer with no working scores 4	(4)

Question Number	Answer	Additional Guidance	Mark
9(a)(i)	- sum of bond energies of all reactants - sum of bond energies of all products - calculation of $\Delta_{r} H$	Example of calculation $\begin{equation*} 945+(3 \times 436)=(+) 2253\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ $6(\mathrm{~N}-\mathrm{H})=6 \times 391=(-) 2346\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $-2346+2253=-93\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ TE from either/both M1 and M2 Correct answer with no working scores 3	(3)
Question Number	Answer	Additional Guidance	Mark
9(a)(ii)	An answer that makes reference to the following points: - the equation in 9(a)(i) is for the formation of two moles of ammonia - the bond energies in the table are mean / not specific to ammonia	Ignore any references to differing conditions for the Haber process Ignore heat losses	(2)

Question Number	Answer	Mark
9(a)(iii)	The only correct answer is D (100 \%)	(1)
	A is not correct because this is the percentage of hydrogen	
	B is not correct because this is half the atom economy for making ammonia	
C is not correct because this is the percentage of nitrogen		

Question Number	Answer	Mark
9(a)(iv)	The only correct answer is C $\quad K_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$ A is not correct because this expression shows molar quantities, not powers and is inverted \mathbf{B} is not correct because this expression shows molar quantities, not powers D is not correct because this expression is for the reverse equation	(1)

Question Number	Answer	Additional Guidance	Mark
9(b)	An answer that makes reference to any three of the following points: - the equilibrium position will shift to the right OR this will favour forward reaction - (in an equilibrium) removal of product decreases rate of back reaction / rate of formation of reactant(s) - time to attain / reach equilibrium may be too long - unreacted reactants can be recycled		(3)

Question Number	Answer	Additional Guidance	Mark
9(c)(i)	An answer that makes reference to the following points:	Do not allow 'to lower the activation energy'	

Question Number		Answer	Additional Guidance	(2)
9(c)(ii)			Allow transition state for intermediate	

Question Number	Answer	Additional Guidance	Mark	
$\mathbf{9 (c) (i i i) ~}$	An answer that makes reference to any three of the following points:		(3)	
	• reactants adsorb onto catalyst/surface	(1)	Do not allow absorb	
	• (there are) active sites on catalyst (surface)	(1)		
	• bonds in reactants weakened / broken			
	or			
	reaction takes place	(1)		
	• products desorb from the catalyst/active site	(1)		

