Pearson Edexcel

Mark Scheme (Results)

November 2021

Pearson Edexcel GCE
In Chemistry (9CH0)
Paper 2: Advanced Organic and Physical
Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

November 2021
Question Paper Log Number 65464
Publications Code 9CHO_02_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- \quad There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- \quad Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Mark
$\mathbf{1}$	The only correct answer is $\mathbf{D}\left(3.6 \times 10^{23}\right)$	$\mathbf{(1)}$
	\mathbf{A} is not correct because the number of moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ has been divided by 3, rather than multiplied by 3	
\boldsymbol{B} is not correct because it is the number of $\mathrm{SO}_{4}{ }^{2-}$ ions		
C is not correct because it is the number of $\mathrm{NH}_{4}{ }^{+}$ions		

$\left.\begin{array}{|l|l|r|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \mathbf{2} & \text { The only correct answer is C }\left(31.2 \mathrm{dm}^{3}\right) & \text { (1) } \\ & \text { A is not correct because the answer assumes a 1:1 ratio of butane to oxygen } \\ \text { B is not correct because the answer assumes a 1:2 ratio of butane to oxygen } \\ \text { D is not correct because the answer assumes a 1:13 ratio of butane to oxygen }\end{array}\right]$

Question Number	Answer	Mark
$\mathbf{3}$	The only correct answer is A (E-2-methylbut-2-enoic acid)	$\mathbf{(1)}$
	B is incorrect because the two high priority groups are on opposite sides	
	C is incorrect because the methyl group is on carbon 2	
\boldsymbol{D} is incorrect because the two high priority groups are on opposite sides and the methyl group is on carbon 2		

Question Number	Answer		Mdditional Guidance	(3)
4(a)			Allow (2) for three correct displayed or structural formulae	Allow (1) for any two correct displayed or structural formulae

Question Number	Answer	Mark
4(b)	The only correct answer is $\mathbf{D} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$ only	$\mathbf{(1)}$
	A is not correct because it will not form pent-2-ene	
	B is not correct because it will only form pent-1-ene	
C is not correct because $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ will also form pent-1-ene		

Question Number	Answer	Additional Guidance	Mark
4(c)	- arrow from double bond to $\partial+\mathrm{H}$ in HBr (1) - arrow from bond in HBr to Br^{2-} - structure of carbocation - arrow from lone pair on Br^{-}to C^{+}in carbocation and final products	Penalise lack of dipole only once in M1 or M2 Do not award M1 if arrow from C=C to C also shown Formation of 3-bromopropane can potentially score M1, M2 and M4 as a TE	(4)

Question Number	Answer	Additional Guidance	Mark
4(d)		Example of calculation	(4)
	- calculation of moles of pent-1-ene	$1.33 / 70=0.019(\mathrm{~mol})$	
	- conversion of volume and temperature	$500 \times 10^{-6} \mathrm{~m}^{3}$ and 333 K Allow conversion of volume to $0.5 \mathrm{dm}^{3}$ if units for M3 and / or M4 shown as kPa	
	- rearrangement of ideal gas equation and calculation of p	$\begin{aligned} & P=(n R T) / V=(0.019 \times 8.31 \times 333) / 500 \times 10^{-6} \\ & =105154.74 \end{aligned}$	
	- final answer to 2 or 3 SF and units	$=105000 \mathrm{~Pa} / 1.05 \times 10^{5} \mathrm{~Pa} / 1.1 \times 10^{5} \mathrm{~Pa}$ Allow $\mathrm{N} \mathrm{m}^{-2}$ for Pa	
		Allow 105 kPa	
		Allow TE at each stage	
		Penalise rounding to 1SF in M1 but then allow TE Correct answer with units and no working scores (4)	

Question Number	Answer	Additional Guidance	Mark
5(a)	• Name of the three functional groups (2)	Alcohol / diol, ester and alkene Allow hydroxy / hydroxyl (group) for alcohol Ignore primary Do not award incorrect structures of functional groups in conjunction with correct name Do not award secondary or tertiary alcohol Three correct functional groups scores (2) Two correct functional groups scores (1)	

Question Number	Answer	Additional Guidance	Mark		
$\mathbf{5 (b)}$	An answer that makes reference to the following point				
- the ester (functional group) will react (with the					
water) in a hydrolysis reaction					Ignore reference to H-bonds between water and OH
:---					
groups		(1)			
:---					
Allow 'hydrolysis reaction' if equation showing break up of ester group also shown					

Question Number	Answer	Mark
5(c)(i)	The only correct answer is C (fractional distillation)	$\mathbf{(1)}$
	\boldsymbol{A} is incorrect because the process is used to produce smaller hydrocarbons	
\boldsymbol{B} is incorrect because the process is used to produce branched and cyclic hydrocarbons		
\boldsymbol{D} is incorrect because the process is used to heat reaction mixtures		

Question Number	Answer	Additional Guidance	Mark
5(c)(ii)	An explanation that makes reference to one of the following pairs of points Either - the OH groups (in compound \mathbf{X}) can form hydrogen bonds (1) - so more energy is needed to vaporise compound \mathbf{X} / break intermolecular forces in compound X Or - hydrocarbons have only London forces, but compound \mathbf{X} has hydrogen bonds (as well) - hydrogen bonds are stronger (than London forces)	Ignore references to dipole-dipole interactions Allow 'the oxygen (in compound X) can form hydrogen bonds’) Allow 'more energy is needed to break bonds in compound \mathbf{X} ' if \mathbf{H} bonds discussed Any reference to the breaking of covalent bonds loses M2 only	(2)

Question Number	Answer	Additional Guidance	Mark
6(a)	- 3 bond pairs showing triple bond, one of which must be a dative bond (1) - both lone pairs on C and O (1)	Example of dot and cross diagram: Allow 1 mark if correct number of electrons shown, but all as crosses or all as dots Ignore lines showing covalent bonds	(2)

Question Number	Answer	Additional Guidance	Mark
6(b)	- Expression of numerator and denominator for atom economy (1) - evaluation (1)	Example of calculation $\begin{aligned} & 28 \div[28+106](\mathrm{x} 100) / \\ & {[28 \div 134](\mathrm{x} \mathrm{100})} \\ & 20.896=20.9 \% \end{aligned}$ Ignore SF except 1 SF Allow TE for M2 for $1 M_{\mathrm{r}}$ error in M1 Allow 1 mark for $(106 \div 134) \times 100=$ 79.1 \%	(2)

Question Number	Answer				Additional Guidance	Mark
6(c)(i)						(1)
	Temperature / K	Rate / mol dm ${ }^{-3} \mathrm{~s}^{-1}$	1/Temperature	In rate	values must be to at least 3SF Allow	
	700	0.0108	1.43×10^{-3}	-4.53	-4.5282	
	850	4.90	1.18×10^{-3}	1.59	1.1765×10^{-3}	

Question Number	Answer	Additional Guidance	Mark
6(c)(ii)	- recognition that (difference in \ln rate) / (difference in $1 / T$) $\begin{equation*} =-E_{a} / R \tag{1} \end{equation*}$ - calculation of $-E_{a} / R$ - calculation of E_{a} with correct units	Example of calculation $-6.12 / 2.5 \times 10^{-4}$ Can be subsumed within M2 $\begin{aligned} & =-24480(\mathrm{~K}) \\ & \begin{aligned} 24480 \times 8.31= & (+) 203428.8 \mathrm{~J} \mathrm{~mol}^{-1} \\ & = \\ & (+) 203000 \mathrm{~J} \mathrm{~mol}^{-1} \\ & (+) 203 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} \end{aligned}$ Ignore SF final answer between $200-204 \mathrm{~kJ} \mathrm{~mol}^{-1}$ with no working scores (3)	(3)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{6 (d) (i) ~}$	\bullet order with respect to $\mathrm{Hb}=1$		(1)

Question Number	Answer	Additional Guidance	Mark
6(d)(iii)	- rate equation	Example of rate equation	(1)
		rate $=k[\mathrm{Hb}][\mathrm{CO}]$	
		allow e.g R / r for rate and K for k	
		Allow expressed in terms of k	
		Allow TE from 6(d)(i) and 6(d)(ii)	
		Note - must be consistent with 6(d)(i) and 6(d)(ii)	

Question Number	Answer		Additional Guidance	Mark
6(d)(iv)	- rearrangement of rate equation to find k - calculation of k - correct units of k	(1) (1) (1)	Example of calculation $k=\text { rate } /[\mathrm{Hb}][\mathrm{CO}]$ $\begin{aligned} & 8.20 \times 10^{-7} /\left(2.09 \times 10^{-6} \times 1.40 \times 10^{-6}\right) \\ & =280246=280000 \end{aligned}$ Ignore SF except 1 SF $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ Allow units in any order Allow use of data from experiments 2 or 3 Correct answer including units with no working scores 3 marks Allow TE on rate equation from (d)(iii) No TE for mistake with rate equation within (d)(iv) e.g. rearrangement error	(3)

(Total Question 6 = 15 marks)

Question Number	Answer		Additional Guidance	Mark
*7(a)	This question assesses the student's ability to show a coherent and logically structured answer with linkages and fully sustained reasoning.		Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with four indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and zero marks for linkages).	(6)
	Marks are awarded for indicative co structured and shows lines of reaso	content and for how the answer is oning.		
	The following table shows how the indicative content.	he marks should be awarded for		
	$\begin{aligned} & \text { Number of indicative marking } \\ & \text { points seen in answer } \end{aligned}$	Number of marks awarded for indicative marking points		
	6	4		
	5-4	3		
	3-2	2		
	1	1		
	0	0		
	The following table shows how the structure and lines of reasoning	he marks should be awarded for		
		Number of marks awarded for structure of answer and sustained lines of reasoning		
	Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning demonstrated throughout	2		
	Answer is partially structured with some linkages and lines of reasoning	1		
	Answer has no linkages between points and is unstructured	0		

Indicative content

- IP1 in both cases many monomers join (by covalent bonds to form polymers)
- IP2 cyclohexene forms an addition polymer / the polymer is formed by an addition reaction
- IP3 4-hydroxycyclohexanecarboxylic acid forms a condensation polymer / the polymer is formed by a condensation reaction
- IP4 no additional products from when cyclohexene polymerises, but water is also formed when 4-hydroxycyclohexanecarboxylic acid polymerises
- IP5

- IP6

Allow both polymerisations require a catalyst
Allow both polymers are formed from a single type of monomer

Allow unsaturated monomer forms saturated polymer

Allow 'only 1 product in addition but two products in condensation'
Allow only one functional group is needed for addition polymerisation but two different functional groups are needed for condensation polymerisation
Allow cyclohexene polymerisation has 100% atom economy, 4-hydroxycyclohexanecarboxylic polymerisation has less than 100\% atom economy

Ignore omitted or misplaced n in IP5 and IP6
Allow 1 IP for IP5 and IP6 if both correct repeat units shown

Allow 2 oxygen atoms on RHS and none on LHS for IP6 repeat unit

Question Number	Answer	Additional Guidance	Mark	
7(b)	An answer that makes reference to the following points			(3)
	• recycling	(1)	Allow re-use	
	• incineration to release energy / generate electricity	$\mathbf{(1)}$	Allow 'use as a fuel'	
	• use as a feedstock (for cracking)	$\mathbf{(1)}$	Allow 'break down into monomers' / 'hydrolyse to form monomers' / 'break down to form small(er) molecules'	Ignore 'remove toxic waste gases from incineration' / developing biodegradable polymers

Question Number	Answer	Additional Guidance	Mark
8(a)	- calculation of mass of C and H in CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ - calculation of mass of O in acid - calculation of moles of C, H and O - deduction of empirical formula	Example of calculation 0.68455 g C and 0.076667 g H 1.21878 g of O Amount of $\mathrm{C}=0.68455 / 12=0.05705 \mathrm{~mol}$ Amount of $\mathrm{H}=0.076667 / 1=0.076667 \mathrm{~mol}$ Amount of $\mathrm{O}=1.21878 / 16=0.076174 \mathrm{~mol}$ $1: 1.34: 1.34=3: 4: 4 \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{4}$ Allow TE throughout Ignore SF Ignore minor rounding errors e.g. 0.684 g of C NOTE do not award $(2.51+0.69)-1.98=1.22 \mathrm{~g}$ for M2 as this is molecular oxygen from combustion NOT oxygen from compound Y	(4)

Question Number	Answer		Additional Guidance	Mark
8(b)	- calculation of amount of sodium hydroxide - calculation of amount of \mathbf{Y} in $25.0 \mathrm{~cm}^{3}$ - calculation of amount of \mathbf{Y} in $250 \mathrm{~cm}^{3}$ - calculation of molar mass of \mathbf{Y} - deduction of structure of \mathbf{Y}	(1) (1) (1) (1) (1)	Example of calculation $26.10 / 1000 \times 0.320=8.352 \times 10^{-3}(\mathrm{~mol})$ $8.352 \times 10^{-3} / 2=4.176 \times 10^{-3}(\mathrm{~mol})$ $4.176 \times 10^{-3} \times(250 / 25)=4.176 \times 10^{-2}(\mathrm{~mol})$ $4.34 / 4.176 \times 10^{-2}=103.9 / 104\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ Allow structural / displayed / skeletal or any combination Allow TE throughout M1-M4 Penalise 1 SF in M1	(5)

Question Number	Answer	Mark
$\mathbf{8 (c)}$	The only correct answer is $\mathbf{A}\left(\mathrm{LiAlH}_{4}\right.$ and ether)	(1)
	B is incorrect as acidified KMnO_{4} is an oxidising agent	
	C is incorrect as $\mathrm{Sn} / \mathrm{HCl}$ is too mild a reducing agent	
\boldsymbol{D} is incorrect as acidified $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is an oxidising agent		

(Total Question 8 = 10 marks)

Question Number	Answer	Additional Guidance		Mark		
$\mathbf{9 (a)}$	• number of peaks in first product	(1)	Number of peaks in the ${ }^{13} \mathrm{C}$ NMR spectrum	4	6	

Question Number	Answer	Additional Guidance	Mark
9(b)	- calculate amount paracetamol - calculate mass of phenol if 100% yield - calculate mass of phenol taking into account overall yield OR - Target mass of paracetamol, accounting for \% yield - Target moles of paracetamol, accounting for \% yield - calculate mass of phenol taking into account overall yield	Example of calculation $\begin{aligned} & 1000 \div 151=6.6225(\mathrm{~mol}) \\ & 6.6225 \times 94.0=622.52(\mathrm{~g}) \\ & 622.52 \times(100 \div 19.04)=3269.5 \mathrm{~g}=3.27 \mathrm{~kg} \\ & 1000 \times 100 \div 19.04=5252.1(\mathrm{~g}) \\ & 5252.1 \div 151=34.782(\mathrm{~mol}) \\ & 34.782 \times 94=3269.5(\mathrm{~g})=3.27 \mathrm{~kg} \end{aligned}$ NOTE overall $\%$ yield is $0.32 \times 0.85 \times 0.7=$ 19.04 \% Allow full marks for final answer calculated from intermediate values rounded to 2 or more SF e.g. 3.28 from 19.0 and 622.5 Allow TE throughout Ignore SF except 1 SF Correct answer with no working scores (3)	(3)

Question Number	Answer	Mark
9(c)(i)	The only correct answer is C (oxidation)	(1)
	A is incorrect as there is no evidence the species have added to the benzene ring	
\boldsymbol{B} is incorrect as there is no evidence of chemical breakdown due to reaction with water		
\boldsymbol{D} is incorrect as the -NH group and -OH group have lost hydrogen atoms		

Question Number	Answer	Additional guidance	Mark
9(c)(ii)		(1)	
	• both carbon atoms circled	Allow any other labelling e.g. asterisk / arrow	
Do not award additional incorrect carbon atoms			

Question Number	Answer	Mark
9(c)(iii)	The only correct answer is B (glutamic acid and cysteine)	(1)
	A is incorrect as aspartic acid has only 4 carbon atoms	
	C is incorrect as the sulfur atom in methionine has a methyl group attached	

Question Number	Answer	Additional Guidance	Mark
9(d)	An explanation that makes reference to the following points	(2)	
	• amino acids exist as zwitterions	maybe shown on a diagram allow (a single molecule of an amino acid) forms positive and negative ions	

Question Number	Answer	Additional Guidance	Mark
10(a)(i)	- balanced equation	Example of equation	(1)
		$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}$	
		+ sign can be on N	
		Product ions must be shown as 2 species	
		Allow arrow for \rightleftharpoons	
		Ignore state symbols even if incorrect	

Question Number	Answer	Additional Guidance	Mark
10(a)(ii)	An explanation that makes reference to the following points - lone pair of electrons on the nitrogen atom - the interaction of the lone pair and the pi electrons of the ring - so less able to accept a proton allow 2 possible marking points for reverse argument - butyl group pushes electrons towards lone pair on nitrogen - so it is more able to accept a proton	Allow the lone pair delocalises into the benzene ring	(3)

Question Number	Answer		Additional Guidance	Mark
10(b)	- correct name - correct formula	(1) (1)	Propanoyl chloride Allow propanoic anhydride $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$ Allow $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}$ Allow displayed or skeletal formula Allow 1 mark for correct name and formula for propanoic acid Allow 1 mark for name and formulae of acyl chloride / acid anhydride with incorrect number of carbon atoms	(2)

Question Number	Answer	Mark
$\mathbf{1 0 (c)}$	The only correct answer is A (blue solution)	(1)
	\mathbf{B} is incorrect because the product is not a precipitate	
\mathbf{C} is incorrect because the product is not yellow		
\mathbf{D} is incorrect because the product is neither yellow nor a precipitate		

Question Number	Answer	Mark
$\mathbf{1 0 (d) (i) ~}$	The only correct answer is D (nucleophilic substitution)	$\mathbf{(1)}$
	\boldsymbol{A} is incorrect because the reaction is not an addition or electrophilic	
	\boldsymbol{B} is incorrect because the attacking species is not an electrophile	
\boldsymbol{C} is incorrect because the reaction is not an addition		

Question Number	Answer	Additional Guidance	Mark
10(d)(ii)	- arrow from lone pair on nitrogen atom to carbon atom - dipole shown and arrow from C- Br bond to Br or just beyond (1) - formula of intermediate including + charge on the N atom and Br^{-} $\text { arrow from } \mathrm{N}-\mathrm{H} \text { bond to } \mathrm{N}^{+}$	Ignore transition state Ignore arrow from Br^{-}ion to H in intermediate	(4)

Question Number	Answer	Additional Guidance	Mark
11(b)	An answer that makes reference to the following points		(2)
	- zero order with respect to hydroxide ions (1) - The graph is a straight line so the rate of reaction is independent of the concentration of the hydroxide ions	M2 dependent on M1	

Question Number	Answer	Additional Guidance	Mark
11(c)	An answer that makes reference to the following points - $\mathrm{S}_{\mathrm{N}} 1$ - as there is only one reactant in the rate determining step / as the hydroxide ions do not affect the rate (1)	Mark consequentially on order Allow TE from (b) e.g. if first order in (b) allow $\begin{equation*} \mathrm{S}_{\mathrm{N} 2} 2 \tag{1} \end{equation*}$	(2)

Question Number	Answer	Additional Guidance	Mark
11(d)	\bullet the chloroalkane is tertiary	Allow TE from first order in (b) and/or S N 2 in (c) e.g. if $\mathrm{S}_{\mathrm{N}} 2$ in (c) allow primary	(1)
		NOTE if first order wrt hydroxide ions in (b) but $\mathrm{S}_{\mathrm{N}} 1$ given in (c) can score 1 mark in (d) for tertiary	

Question Number	Answer		Additional Guidance	Mark
12	- 2-bromo-2-methylbutane reacts with Mg - Dry ether - $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}(\mathrm{MgBr})\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$ - react Grignard reagent with HCHO - $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{OMgBr}$ - (hydrolyse) with (dilute) acid OR - 2-bromo-2-methylbutane reacts with KCN - ethanol (as solvent) - $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}(\mathrm{CN})\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$ - nitrile (hydrolysed) with (dilute) acid - $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}(\mathrm{COOH})\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$ - carboxylic acid (reduced) with LiAlH_{4} (in dry ether)	(1) (1)	Note - award of reagent or solvent marks must be in context of attempt to carry out an appropriate reaction e.g. use of ethanolic KCN to react with a ketone would not score OR M2 do not award HCOH Allow with water / H^{+} Ignore HCN Allow methanol Allow H^{+}	(6)

(Total for Question $12=6$ marks) TOTAL FOR PAPER = 90 MARKS

