A-level
 CHEMISTRY
 7405/1

Paper 1 Inorganic and Physical Chemistry
Mark scheme
June 2022
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]
AS and A-Level Chemistry

Mark Scheme Instructions for Examiners

1. General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- extra information to help the examiner make his or her judgement and help to delineate what is acceptable or not worthy of credit or, in discursive answers, to give an overview of the area in which a mark or marks may be awarded.
The extra information in the 'Comments' column is aligned to the appropriate answer in the lefthand part of the mark scheme and should only be applied to that item in the mark scheme.
You should mark according to the contents of the mark scheme. If you are in any doubt about applying the mark scheme to a particular response, consult your Team Leader.
At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.
In general the right-hand side of the mark scheme is there to provide those extra details which might confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent.
The use of $\mathrm{M} 1, \mathrm{M} 2, \mathrm{M} 3$ etc in the right-hand column refers to the marking points in the order in which they appear in the mark scheme. So, M1 refers to the first marking point, M2 the second marking point etc.

2. Emboldening

2.1 In a list of acceptable answers where more than one mark is available 'any two from' is used, with the number of marks emboldened. Each of the following bullet points is a potential mark.
2.2 A bold and is used to indicate that both parts of the answer are required to award the mark.
2.3 Alternative answers acceptable for a mark are indicated by the use of OR. Different terms in the mark scheme are shown by a / ; eg allow smooth / free movement.

3. Marking points

3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which students have provided extra responses. The general 'List' principle to be followed in such a situation is that 'right + wrong $=$ wrong'.
Each error / contradiction negates each correct response. So, if the number of error / contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (often prefaced by 'Ignore' in the mark scheme) are not penalised.

For example, in a question requiring 2 answers for 2 marks:

Correct answers	Incorrect answers (i.e. incorrect rather than neutral)	Mark (2)	Comment
1	0	1	
1	1	1	They have not exceeded the maximum number of responses so there is no penalty.
1	2	0	They have exceeded the maximum number of responses so the extra incorrect response cancels the correct one.
2	0	2	
2	1	1	
2	2	0	
3	0	2	
3	1	1	The incorrect response cancels out one of the two correct responses that gained credit.
3	2	0	Two incorrect responses cancel out the two marks gained.
3	3	0	

3.2 Marking procedure for calculations

Full marks should be awarded for a correct numerical answer, without any working shown, unless the question states 'Show your working' or 'justify your answer'. In this case, the mark scheme will clearly indicate what is required to gain full credit.
If an answer to a calculation is incorrect and working is shown, process mark(s) can usually be gained by correct substitution / working and this is shown in the 'Comments' column or by each stage of a longer calculation.

3.3 Errors carried forward, consequential marking and arithmetic errors

Allowances for errors carried forward are most likely to be restricted to calculation questions and should be shown by the abbreviation ECF or consequential in the marking scheme.
An arithmetic error should be penalised for one mark only unless otherwise amplified in the marking scheme. Arithmetic errors may arise from a slip in a calculation or from an incorrect transfer of a numerical value from data given in a question.

3.4 Equations

In questions requiring students to write equations, state symbols are generally ignored unless otherwise stated in the 'Comments' column.
Examiners should also credit correct equations using multiples and fractions unless otherwise stated in the 'Comments' column.

3.5 Oxidation states

In general, the sign for an oxidation state will be assumed to be positive unless specifically shown to be negative.

3.6 Interpretation of 'it'

Answers using the word 'it' should be given credit only if it is clear that the 'it' refers to the correct subject.

3.7 Phonetic spelling

The phonetic spelling of correct scientific terminology should be credited unless there is a possible confusion with another technical term or if the question requires correct IUPAC nomenclature.

3.8 Brackets

(....) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

3.9 Ignore / Insufficient / Do not allow

Ignore or insufficient is used when the information given is irrelevant to the question or not enough to gain the marking point. Any further correct amplification could gain the marking point.
Do not allow means that this is a wrong answer which, even if the correct answer is given, will still mean that the mark is not awarded.

3.10 Marking crossed out work

Crossed out work that has not been replaced should be marked as if it were not crossed out, if possible. Where crossed out work has been replaced, the replacement work and not the crossed out work should be marked.

3.11 Reagents

The command word "Identify", allows the student to choose to use either the name or the formula of a reagent in their answer. In some circumstances, the list principle may apply when both the name and the formula are used. Specific details will be given in mark schemes.

The guiding principle is that a reagent is a chemical which can be taken out of a bottle or container. Failure to identify complete reagents will be penalised, but follow-on marks (e.g. for a subsequent equation or observation) can be scored from an incorrect attempt (possibly an incomplete reagent) at the correct reagent. Specific details will be given in mark schemes.

For example, no credit would be given for

- the cyanide ion or CN^{-}when the reagent should be potassium cyanide or KCN ;
- the hydroxide ion or OH^{-}when the reagent should be sodium hydroxide or NaOH ;
- the $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$ion when the reagent should be Tollens' reagent (or ammoniacal silver nitrate). In this example, no credit is given for the ion, but credit could be given for a correct observation following on from the use of the ion. Specific details will be given in mark schemes.

In the event that a student provides, for example, both KCN and cyanide ion, it would be usual to ignore the reference to the cyanide ion (because this is not contradictory) and credit the KCN. Specific details will be given in mark schemes.

3.12 Organic structures

Where students are asked to draw organic structures, unless a specific type is required in the question and stated in the mark scheme, these may be given as displayed, structural or skeletal formulas or a combination of all three as long as the result is unambiguous.
In general

- Displayed formulae must show all of the bonds and all of the atoms in the molecule, but need not show correct bond angles.
- Skeletal formulae must show carbon atoms by an angle or suitable intersection in the skeleton chain. Functional groups must be shown and it is essential that all atoms other than C atoms are shown in these (except H atoms in the functional groups of aldehydes, secondary amines and N -substituted amides which do not need to be shown).
- Structures must not be ambiguous, e.g. 1-bromopropane should be shown as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ and not as the molecular formula $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$ which could also represent the isomeric 2-bromopropane.
- Bonds should be drawn correctly between the relevant atoms. This principle applies in all cases where the attached functional group contains a carbon atom, e.g nitrile, carboxylic acid, aldehyde and acid chloride. The carbon-carbon bond should be clearly shown. Wrongly bonded atoms will be penalised on every occasion. (see the examples below)
- The same principle should also be applied to the structure of alcohols. For example, if students show the alcohol functional group as $\mathrm{C}-\mathrm{HO}$, they should be penalised on every occasion.
- Latitude should be given to the representation of $\mathrm{C}-\mathrm{C}$ bonds in alkyl groups, given that $\mathrm{CH}_{3}-$ is considered to be interchangeable with $\mathrm{H}_{3} \mathrm{C}-$ even though the latter would be preferred.
- Similar latitude should be given to the representation of amines where $\mathrm{NH}_{2}-\mathrm{C}$ will be allowed, although $\mathrm{H}_{2} \mathrm{~N}-\mathrm{C}$ would be preferred.
- Poor presentation of vertical $\mathrm{C}-\mathrm{CH}_{3}$ bonds or vertical $\mathrm{C}-\mathrm{NH}_{2}$ bonds should not be penalised. For other functional groups, such as -OH and -CN , the limit of tolerance is the half-way position between the vertical bond and the relevant atoms in the attached group.

By way of illustration, the following would apply.
allowed

- Representation of CH_{2} by $\mathrm{C}-\mathrm{H}_{2}$ will be penalised
- Some examples are given here of structures for specific compounds that should not gain credit (but, exceptions may be made in the context of balancing equations)

$\mathrm{CH}_{3} \mathrm{COH}$	for	ethanal
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{HO}$	for	ethanol
$\mathrm{OHCH}_{2} \mathrm{CH}_{3}$	for	ethanol
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	for	ethanol
$\mathrm{CH}_{2} \mathrm{CH}_{2}$	for	ethene
$\mathrm{CH}_{2} . \mathrm{CH}_{2}$	for	ethene
$\mathrm{CH}_{2}: \mathrm{CH}_{2}$	for	ethene

- Each of the following should gain credit as alternatives to correct representations of the structures.

$\mathrm{CH}_{2}=\mathrm{CH}_{2}$	for	ethene, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$
$\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$	for	propan-2-ol, $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$

- In most cases, the use of "sticks" to represent $\mathrm{C}-\mathrm{H}$ bonds in a structure should not be penalised. The exceptions to this when "sticks" will be penalised include
- structures in mechanisms where the $\mathrm{C}-\mathrm{H}$ bond is essential (e.g. elimination reactions in halogenoalkanes and alcohols)
- when a displayed formula is required
- when a skeletal structure is required or has been drawn by the candidate

3.13 Organic names

As a general principle, non-IUPAC names or incorrect spelling or incomplete names should not gain credit. Some illustrations are given here.
Unnecessary but not wrong numbers will not be penalised such as the number ' 2 ' in 2methylpropane or the number ' 1 ' in 2-chlorobutan-1-oic acid.

but-2-ol	should be butan-2-ol
2-hydroxybutane	should be butan-2-ol
butane-2-ol	should be butan-2-ol
2-butanol	should be butan-2-ol
ethan-1,2-diol	should be ethane-1,2-diol
2-methpropan-2-ol	should be 2-methylpropan-2-ol
2-methylbutan-3-ol	should be 3-methylbutan-2-ol
3-methylpentan	should be 3-methylpentane
3-mythylpentane	should be 3-methylpentane
3-methypentane	should be propanenitrile
propanitrile	should be ethylamine (although aminoethane can gain credit)
aminethane	should be 2-bromo-3-methylbutane
2-methyl-3-bromobutane	
3-bromo-2-methylbutane	should be 2-bromo-3-methylbutane
3-methyl-2-bromobutane	should be 2-bromo-3-methylbutane
2-methylbut-3-ene	should be 3-methylbut-1-ene
difluorodichloromethane	should be dichlorodifluoromethane

3.14 Organic reaction mechanisms

Curly arrows should originate either from a lone pair of electrons or from a bond.
The following representations should not gain credit and will be penalised each time within a clip.

For example, the following would score zero marks

When the curly arrow is showing the formation of a bond to an atom, the arrow can go directly to the relevant atom, alongside the relevant atom or more than half-way towards the relevant atom.

In free-radical substitution

- the absence of a radical dot should be penalised once only within a clip.
- the use of half-headed arrows is not required, but the use of double-headed arrows or the incorrect use of half-headed arrows in free-radical mechanisms should be penalised once only within a clip

The correct use of skeletal formulae in mechanisms is acceptable, but where a C-H bond breaks, both the bond and the H must be drawn to gain credit.

3.15 Extended responses

For questions marked using a 'Levels of Response' mark scheme:

Level of response mark schemes are broken down into three levels, each of which has a descriptor. Each descriptor contains two statements. The first statement is the Chemistry content statement and the second statement is the communication statement.

Determining a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the Chemistry content descriptor for that level. The descriptor for the level indicates the qualities that might be seen in the student's answer for that level. If it meets the lowest level, then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level.

Once the level has been decided, the mark within the level is determined by the communication statement:

- If the answer completely matches the communication descriptor, award the higher mark within the level.
- If the answer does not completely match the communication descriptor, award the lower mark within the level.

The exemplar materials used during standardisation will help you to determine the appropriate level. There will be an exemplar in the standardising materials which will correspond with each level of the mark scheme and for each mark within each level. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the exemplar to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the exemplar.
You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.
Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other chemically valid points. Students may not have to cover all of the points mentioned in the indicative content to reach the highest level of the mark scheme. The mark scheme will state how much chemical content is required for the highest level.
An answer which contains nothing of relevance to the question must be awarded no marks.

For other extended response answers:

Where a mark scheme includes linkage words (such as 'therefore', 'so', 'because' etc), these are optional. However, a student's marks for the question may be limited if they do not demonstrate the ability to construct and develop a sustained line of reasoning which is coherent, relevant, substantiated and logically structured. In particular answers in the form of bullet pointed lists may not be awarded full marks if there is no indication of logical flow between each point or if points are in an illogical order.
The mark schemes for some questions state that the maximum mark available for an extended response answer is limited if the answer is not coherent, relevant, substantiated and logically structured. During the standardisation process, the Lead Examiner will provide marked exemplar material to demonstrate answers which have not met these criteria. You should use these exemplars as a comparison when marking student answers.

Question	Answers	Additional Comments/Guidelines	Mark
01.1	forward and reverse reactions proceed at equal rates concentrations (of reactants and products) remain constant or concentrations (of reactants and products) stay the same	allow answers in either order do not accept equal concentrations do not accept concentrations are the same ignore closed system	$\begin{gathered} 1 \\ \mathrm{AO} 1 \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
01.2	more moles of (gaseous) products (than (gaseous) reactants) or more moles on the RHS (than LHS)	allow molecules do not accept atoms	$\begin{gathered} 1 \\ \text { AO3 } \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
01.3	M1 (at equilibrium) $\mathrm{n}(\mathrm{CO})=0.32(\mathrm{~mol})$ M2 total number of moles (at equilibrium) $=1.07$ (mol) or mole fraction (CO) $=0.299$ $\text { M3 p(CO) }\left[=\frac{0.320 \times 250}{1.07}\right]=74.8(\mathrm{kPa})$	$\mathrm{M} 3=\frac{\mathrm{M} 1 \times 250}{\mathrm{M} 2}$ allow 75 (kPa) an answer of $67.8(\mathrm{kPa})=\mathbf{2}$ marks max	$\begin{gathered} 1 \\ 1 \\ \\ 1 \\ \text { AO2 } \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
01.4 $K_{p}=\frac{p\left(\mathrm{CH}_{3} \mathrm{OH}\right)}{\mathrm{p}\left(\mathrm{H}_{2}\right)^{2} \mathrm{p}(\mathrm{CO})}$ do not accept square brackets 1	AO1		

Question	Answers	Additional Comments/Guidelines	Mark
01.5	M1 $\mathrm{p}\left(\mathrm{H}_{2}\right)^{2}=\frac{\mathrm{p}\left(\mathrm{CH}_{3} \mathrm{OH}\right)}{K_{\mathrm{p}} \times \mathrm{p}(\mathrm{CO})}$ or $\frac{5.45}{1.15 \times 10^{-6} \times 125}$ M2 $\mathrm{p}\left(\mathrm{H}_{2}\right)=\sqrt{37913}$ or $\mathrm{p}\left(\mathrm{H}_{2}\right)^{2}=37913$ M3 $\mathrm{p}\left(\mathrm{H}_{2}\right)=194.7(\mathrm{kPa})$	rearrangement with or without numbers $\begin{aligned} & \text { M3 }=\sqrt{\text { M2 }} \\ & \text { allow } 195(\mathrm{kPa}) \end{aligned}$ if rearrangement incorrect in M1 allow M3 only if $p\left(\mathrm{H}_{2}\right)$ is not squared in Question $\mathbf{0 1 . 4}$ allow $p\left(\mathrm{H}_{2}\right)=\frac{\mathrm{p}\left(\mathrm{CH}_{3} \mathrm{OH}\right)}{K_{\mathrm{p}} \times \mathrm{p}(\mathrm{CO})}$ for M 1 and 37913 for M 2 (max 2)	$\begin{gathered} 1 \\ 1 \\ \text { AO2 } \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark

01.6	$=\left(\frac{1}{1.15 \times 10^{-6}}\right)=8.7(0) \times 10^{5}$	allow 869565	
kPa^{2}		1	

Question	Answers	Additional Comments/Guidelines	Mark
02.1	average/mean mass of 1 atom (of an element) $1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$ or average/mean mass of atoms of an element $1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$ or average/mean mass of atoms of an element $\times 12$ mass of one atom of ${ }^{12} \mathrm{C}$ or (average) mass of one mole of atoms $1 / 12$ mass of one mole of ${ }^{12} \mathrm{C}$ or (weighted) average mass of all the isotopes $1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$ or average mass of an atom/isotope (compared to C-12) on a scale in which an atom of $\mathrm{C}-12$ has a mass of 12	$\begin{aligned} & \text { M1 }=\text { top line } \\ & \text { M2 }=\text { bottom line } \end{aligned}$ if moles and atoms/isotopes mixed $\max =1$	$\begin{gathered} 1 \\ 1 \\ \text { AO1 } \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
	M1 $186.3=\frac{(185 \times 10)+(\mathbf{X} \times 17)}{27}$	correct expression	1
02.2	M2 (relative isotopic mass $)=\underline{187}(.1)$		1
			AO2

Question	Answers	Additional Comments/Guidelines	Mark
02.3	same electron configuration	allow same number of electrons allow same electron structure ignore same number of protons ignore different number of neutrons do not accept same number of neutrons	1

Question	Answers	Additional Comments/Guidelines	Mark
02.4	M1 mass ${ }^{185} \operatorname{Re}\left(=\frac{185}{6.02 \times 10^{23} \times 1000}\right)=3.072 \times 10^{-25}(\mathrm{~kg})$	calculate mass in kg	1
	$\text { M2 } v=\frac{d}{t}$	recall of $\mathrm{v}=\mathrm{d} / \mathrm{t}$	1
	$\text { M3 } v^{2}=\frac{2 K E}{m} \text { or } 7.5(0) \times 10^{11}$	rearrangement to get v^{2}	1
	$\text { M4 } v=\sqrt{\frac{2 K E}{m}} \text { or } 8.66 \times 10^{5}$	allow $\sqrt{\frac{2 \times 1.153 \times 10^{-13}}{\mathrm{M} 1}}$	1
	$\text { M5 } \mathrm{t}\left(=\frac{1.45}{8.66 \times 10^{5}}\right)=1.67 \times 10^{-6}(\mathrm{~s})$	M5 t $=\frac{1.45}{\text { M }}$	1
		allow 1.67×10^{-6} to $1.68 \times 10^{-6}(\mathrm{~s})$	$\begin{aligned} & \mathrm{AO} 1 \\ & \mathrm{AO} 2 \end{aligned}$

02.4	alternative method:		
	M1 mass ${ }^{185} \operatorname{Re}\left(=\frac{185}{6.02 \times 10^{23} \times 1000}\right)=3.072 \times 10^{-25}(\mathrm{~kg})$	calculate mass in kg	1
	$\text { M2 } v=\frac{d}{t} \text { or } K E=\frac{m d^{2}}{2 t^{2}}$	recall of $\mathrm{v}=\mathrm{d} / \mathrm{t}$	1
	$\text { M3 } \mathrm{t}^{2}=\frac{\mathrm{md}^{2}}{2 \mathrm{KE}}$	rearrangement to get t^{2}	1
	$\text { M4 } t=d \sqrt{\frac{\mathrm{~m}}{2 \mathrm{KE}}} \text { or } \sqrt{\frac{\mathrm{md}^{2}}{2 \mathrm{KE}}} \text { or } \sqrt{\frac{3.072 \times 10^{-25}}{2 \times 1.153 \times 10^{-13}}}$	allow $\sqrt{\frac{\mathrm{M} 1}{2 \times 1.153 \times 10^{-13}}}$	1
	M5 $t=1.67 \times 10^{-6}(\mathrm{~s})$	allow 1.67×10^{-6} to $1.68 \times 10^{-6}(\mathrm{~s})$	$\begin{gathered} 1 \\ \text { AO1 } \\ \text { AO2 } \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
02.5	at the detector/(negative) plate the ions/Re ${ }^{+}$gain an electron (relative) abundance depends on the size of the current	alternative answer M1 ion knocks out an electron into electron multiplier M2 signal from electron multiplier proportional to number of ions	$\begin{gathered} 1 \\ 1 \\ \mathrm{AO} 1 \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
03.1	M1 $2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2}$ $\mathrm{M} 2 \mathrm{n}\left(\mathrm{MnO}_{4}^{-}\right)=\frac{0.020 \times 35.85}{1000}=\underline{7.17 \times 10^{-4}}(\mathrm{~mol})$ M3 $n\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)=7.17 \times 10^{-4} \times 5 / 2=1.793 \times 10^{-3}(\mathrm{~mol})$ M4 conc $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right.$ in sample $)=\frac{1.793 \times 10^{-3}}{25 \times 10^{-3}}=0.0717\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ M5 original conc of $\mathrm{H}_{2} \mathrm{O}_{2}(=0.0717 \times \underline{20})=1.43\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$	ignore state symbols $\begin{aligned} & M 3=M 2 \times 5 / 2 \\ & M 4=\frac{M 3 \times 1000}{25} \\ & M 5=\frac{M 4 \times 100}{5} \end{aligned}$ allow 1.43-1.44 alternative answer using 3:4 ratio given on question paper $\begin{aligned} & \text { M3 }=7.17 \times 10^{-4} \times 4 / 3=9.56 \times 10^{-4} \\ & \text { M4 }=0.0382\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & \text { M5 }=0.765\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$	1 1 1 $\stackrel{1}{\mathrm{AO} 2}$

Question	Answers	Additional Comments/Guidelines	Mark
03.2	KMnO_{4} is self-indicating or KMnO_{4} is no longer decolourised at end point or (solution) changes (from colourless) to (pale) pink/purple at end point		$\begin{gathered} 1 \\ \text { AO1 } \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
03.3	-1		1

Question	Answers	Additional Comments/Guidelines	Mark
03.4	M1 $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$	allow multiples ignore state symbols	1
	M2 V $=185 \times 10^{-6}\left(\mathrm{~m}^{3}\right)$ and $\mathrm{P}=100000(\mathrm{~Pa})$	unit conversions	1
	$\text { M3 } n=\frac{P V}{R T}=\frac{100000 \times 185 \times 10^{-6}}{8.31 \times 298}$	rearrangement of ideal gas equation	1
	$\mathrm{M} 4 \mathrm{n}\left(\mathrm{O}_{2}\right)=7.47 \times 10^{-3}(\mathrm{~mol})$	calculation	1
	M5 $\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)=\left(7.47 \times 10^{-3} \times 2\right)=0.0149(\mathrm{~mol})$	allow M 4×2 to 2 sig fig or more	1
		if incorrect rearrangement in M3 can score M1, M2 and M5	$\begin{aligned} & \text { AO1 } \\ & \text { AO2 } \end{aligned}$

Question	Answers	Additional Comments/Guidelines	Mark
03.5	M1 enthalpy (change) to break 1 mol bonds (in gaseous state)	allow heat energy (change) to break 1 mol bonds allow the enthalpy needed to break 1 mol bonds do not accept enthalpy released	1
	M2 averaged over a range of compounds / molecules		1
	$\begin{aligned} & \text { M3 }-789=4(388)+163+4(463)+2(\mathrm{O}-\mathrm{O})-944-8(463) \\ & \text { or }-789=4(388)+163+2(\mathrm{O}-\mathrm{O})-944-4(463) \\ & \text { or }-789=3567+2(\mathrm{O}-\mathrm{O})-4648 \\ & \text { or }-789=1715+2(\mathrm{O}-\mathrm{O})-2796 \end{aligned}$		1
	$\mathrm{M} 42(\mathrm{O}-\mathrm{O})=\underline{292}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		1
	M5 O-O = $146\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	$\mathrm{M} 5=\mathrm{M} 4 \div 2$	$\begin{gathered} 1 \\ \mathrm{AO} 1 \\ \mathrm{AO} 2 \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
	$\mathrm{M} 1 \quad K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$		
04.1	$\left.\mathrm{M} 2\left[\mathrm{H}^{+}\right]\left(=\sqrt{1.74 \times 10^{-5} \times 0.150}\right)\right]=1.62 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$		1
	$\mathrm{M} 3 \mathrm{pH}=2.79$	$\mathrm{M} 3=-\log \mathrm{M} 2$ answer must be to 2 decimal places	1

Question	Answers	Additional Comments/Guidelines	Mark

04.2	M1 $\left[\mathrm{OH}^{-}\right]=\underline{\mathbf{2} \times 0.01=0.02 ~}$		1
	$\mathrm{M} 2\left[\mathrm{H}^{+}\right]\left(=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}=\frac{2.93 \times 10^{-15}}{0.02}\right)=1.47 \times 10^{-13}$	allow $\frac{2.93 \times 10^{-15}}{\mathrm{M} 1}$	1
	M3 pH $=12.83$	allow 12.8 $\mathrm{M} 3=-\log \mathrm{M} 2$	$\begin{gathered} 1 \\ \mathrm{AO} 2 \end{gathered}$
		if $\mathrm{pH}=12.5(3)$ allow 2 marks (not used factor of 2 in M1)	

Question	Answers	Additional Comments/Guidelines	Mark
	22.45		1
04.3	same $\left[\mathrm{OH}^{-}\right]$or same amount/number of OH^{-}ions		1
			AO3

Question	Answers	Additional Comments/Guidelines	Mark
04.4	add excess ethanoic acid to KOH or add enough KOH to the ethanoic acid so that the acid is partially neutralised or add enough KOH so that the acid contains a mixture of ethanoic acid and ethanoate ions		1
	$\mathrm{KOH}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COOK}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{CH}_{3} \mathrm{COO}^{-} \text {(from salt) reacts with (added) acid/ } \mathrm{H}^{+}$	allow $\mathrm{KOH}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{K}^{+}+\mathrm{H}_{2} \mathrm{O}$ ignore equilibrium shifts	1 $\begin{gathered} 1 \\ \text { AO3 } \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
04.5	$\begin{aligned} & \mathrm{M} 1(\text { at start }) \mathrm{n}(\mathrm{NaOH})=\frac{2.00}{40}=\underline{0.05}(\mathrm{~mol}) \\ & \quad \text { and } \\ & \quad \mathrm{n}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=\frac{500 \times 1.0}{1000}=\underline{0.5}(\mathrm{~mol}) \end{aligned}$	$\mathrm{M} 3=\mathrm{n}(\mathrm{NaOH})$ from M 1	1
	M2 (after adding NaOH) $\mathrm{n}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=(0.50-0.05)=0.45(\mathrm{~mol})$		1
	$\mathrm{M} 3 \mathrm{n}\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)=(\mathrm{n} \mathrm{NaOH})=0.05\left(\mathrm{~mol}^{-}\right)$		1
	$\begin{aligned} & \mathrm{M} 4\left[\mathrm{H}^{+}\right]=\left(\frac{\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]} \text {or } \frac{1.74 \times 10^{-5} \times 0.9}{0.1} \text { or } \frac{1.74 \times 10^{-5} \times 0.45 / \mathrm{V}}{0.05 / \mathrm{V}}\right) \\ & \quad=1.57 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$	$\mathrm{M} 4=\frac{1.74 \times 10^{-5} \times \mathrm{M} 2}{\mathrm{M} 3}$ V cancels out so not needed in this expression	1
	M5 pH $=3.80$	answer to 2 decimal places M5 allow 3.81 allow $\mathrm{pH}=-\log \mathrm{M} 4$	$\begin{gathered} 1 \\ \mathrm{AO} 2 \end{gathered}$

04.5	Henderson-Hasselbach method		
	M1 (at start) $n(\mathrm{NaOH})=\frac{2.00}{40}=\underline{0.05}(\mathrm{~mol})$ and $n\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=\frac{500 \times 1.0}{1000}=\underline{0.5}(\mathrm{~mol})$		1
	M2 (after adding NaOH) $\begin{aligned} & \mathrm{n}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=(0.50-0.05)=0.45(\mathrm{~mol}) \\ & \text { or }\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.9(0) \end{aligned}$		1
	$\begin{aligned} & \mathrm{M} 3 \mathrm{n}\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)=\mathrm{n}(\mathrm{NaOH})=0.05(\mathrm{~mol}) \\ & \quad \text { or }\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=0.1(0) \end{aligned}$	$\mathrm{M} 3=\mathrm{n}(\mathrm{NaOH})$ from M1	1
	$\begin{aligned} & \mathrm{M} 4 \mathrm{pH}=4.759+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \\ & \quad \text { or } 4.759+\log \frac{0.1}{0.9} \quad \text { or } 4.759+\log \frac{0.05 / \mathrm{V}}{0.45 / \mathrm{V}} \end{aligned}$	V cancels out so not needed in this expression	1
	$\mathrm{M} 5 \mathrm{pH}=3.80$	answer to 2 decimal places M5 allow 3.81	$\stackrel{1}{\mathrm{AO} 2}$

Question	Answers	Additional Comments/Guidelines	Mark
05.1	forms a solution with $\mathrm{pH}=14$ at $25^{\circ} \mathrm{C}$		$\begin{gathered} \stackrel{1}{2 O} \\ \text { AO } \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
05.2	$\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}$	allow multiples ignore state symbols	$\begin{gathered} 1 \\ \text { AO2 } \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
05.3	universal indicator $\mathrm{SO}_{2}(\mathrm{aq})$ orange-red $\mathrm{SO}_{3}(\mathrm{aq})$ red or pH meter $\mathrm{SO}_{2}(\mathrm{aq}) \mathrm{pH} 2-3$ $\mathrm{SO}_{3}(\mathrm{aq}) \mathrm{pH} 0-1$ or any named metal carbonate (or formula) or Mg or Ca or Zn $\mathrm{SO}_{2}(\mathrm{aq})$ slower effervescence $\mathrm{SO}_{3}(\mathrm{aq})$ faster effervescence	if reagent is incomplete lose M1 and mark on allow correct comparison of acidic colours (red, orange, yellow) allow correct comparison of acidic pH ignoring values allow observation allow correct comparison allow named oxidising agent eg (acidified) KMnO_{4} or (acidified) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ $\mathrm{SO}_{2}(\mathrm{aq})$ correct colour acidified change $\mathrm{SO}_{3}(\mathrm{aq})$ no visible change or NVC allow (acidified) barium chloride solution or allow (acidified) barium chloride solution $\mathrm{SO}_{2}(\mathrm{aq})$ no visible change or NVC $\mathrm{SO}_{3}(\mathrm{aq})$ white precipitate	$\begin{gathered} 1 \\ 1 \\ 1 \\ \mathrm{AO} 3 \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
${ }^{31} \mathrm{P}_{4}{ }^{+}$ Allow $\mathrm{P}_{4}{ }^{+}=1$ mark 05.4 Allow ${ }^{31} \mathrm{P}=1$ mark AO3 			

Question	Answers	Additional Comments/Guidelines	Mark
	$\mathrm{P}_{4} \mathrm{O}_{10}+12 \mathrm{NaOH} \rightarrow 4 \mathrm{Na}_{3} \mathrm{PO}_{4}+6 \mathrm{H}_{2} \mathrm{O}$		1
05.5		allow formation of acid salts	AO1

Question	Answers	Additional Comments/Guidelines	Mark
05.7	This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question. Level 3 5-6 marks All stages are covered and the description of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 and stage 3 . Level 2 3-4 marks All stages are covered but the description of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3.	indicative chemistry content contradictions negate statements Stage 1 structure 1a) NaCl ionic lattice or giant ionic 1b) Cl_{2} and HCl molecular (covalent) or Cl_{2} and HCl are (simple) molecules Stage 2 forces responsible for melting point 2a) NaCl attractions between + and - ions 2b) $\mathrm{Cl}_{2} \mathrm{vdw}$ forces 2c) HCl dipole dipole forces Stage 3 comparison of melting point 3a) ionic bonds stronger than IMF $3 b$) chlorine $/ \mathrm{Cl}_{2}$ is a bigger (molecule) than HCl or chlorine/ Cl_{2} has more electrons than HCl 3c) more/stronger forces between molecules in Cl_{2} than those in HCl or more/stronger IMF in Cl_{2} than those in HCl or vdw between molecules in $\mathrm{Cl}_{2}>$ dipole dipole between molecules in HCl	$\begin{gathered} 6 \\ \text { AO1 } \\ \text { AO3 } \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
	Level 1 $\mathbf{1 - 2}$ marks Two stages are covered but the description of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements and these are presented in a logical order.		
Level 0 0 marks Insufficient correct chemistry to gain a mark.			

Question	Answers	Additional Comments/Guidelines	Mark
06.1	toxic/poisonous/too much chlorine causes death		$\begin{gathered} \stackrel{1}{2} \\ \text { AO1 } \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
06.2	$\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCl}+\mathrm{HClO}$ chlorine $/ \mathrm{Cl}^{-} / \mathrm{Cl}_{2}$ gains electron(s) (to form Cl^{-}) and loses electron(s) (to form ClO^{-})	$\text { allow } \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{ClO}^{-}$ ignore chlorine is oxidised and reduced ignore disproportionation ignore oxidation numbers unless incorrect	$\begin{gathered} 1 \\ 1 \\ \text { AO1 } \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
06.3	brown solution or black solid (forms) $\mathrm{Cl}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{I}_{2}$	do not accept purple allow multiples ignore state symbols	$\begin{gathered} 1 \\ \mathrm{AO} 1 \\ \mathrm{AO} 2 \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
06.4	$\begin{aligned} & \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-} \rightarrow \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2} \\ & \mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{H}^{+}+8 \mathrm{I}^{-} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2} \end{aligned}$ oxidising agent	equations can be in either order allow $\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{I}^{-} \rightarrow \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$ allow $\mathrm{SO}_{4}{ }^{2-}+10 \mathrm{H}^{+}+8 \mathrm{I}^{-} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2}$ allow alternative correct balanced equations starting from Nal to form SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$ eg $\begin{aligned} & 2 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaI} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2} \\ & 3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaI} \rightarrow 2 \mathrm{NaHSO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2} \end{aligned}$ $\begin{aligned} & 5 \mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{NaI} \rightarrow 4 \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2} \\ & 9 \mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{NaI} \rightarrow 8 \mathrm{NaHSO}_{4}+\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2} \end{aligned}$	$\begin{array}{r} 1 \\ 1 \\ 1 \\ \text { AO1 } \end{array}$

Question	Answers	Additional Comments/Guidelines	Mark
06.5	NaF or sodium fluoride		1
	CO_{2} or carbon dioxide		1
	$\mathrm{CO}_{3}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$	allow multiples	1
			AO1
			AO3

Question	Answers	Additional Comments/Guidelines	Mark

06.6		allow shape with 2 lp and 2 bp ignore absence of charge	1
	Ione pair-lone pair repulsion > bond pair-bond pair repulsion or Ione pair repel to be as far apart as possible	allow lp-lp repulsion > bp-bp repulsion	1
	104 to 106(${ }^{\circ}$)	allow 95 to 106(${ }^{\circ}$)	$\begin{gathered} 1 \\ \mathrm{AO} 1 \\ \mathrm{AO} 2 \\ \mathrm{AO} 3 \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
06.7	$\mathrm{TiCl}_{4}+2 \mathrm{Mg} \rightarrow 2 \mathrm{MgCl}_{2}+\mathrm{Ti}$	allow multiples ignore state symbols	1

Question	Answers	Additional Comments/Guidelines	Mark
07.1	(visible/white) light absorbed (and (d) electrons excited) only yellow light transmitted/reflected	do not accept absorbs yellow light do not accept emitted reference to light required in M1 or M2	$\begin{gathered} 1 \\ 1 \\ \text { AO2 } \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
07.2	$\begin{aligned} & (\Delta) E=h v \text { or } \frac{h c}{\lambda} \\ & 6(.00) \times 10^{14}\left(\mathrm{~s}^{-1}\right) \end{aligned}$	allow with or without numbers	$\begin{gathered} 1 \\ 1 \\ \text { AO2 } \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
07.3	(change in) oxidation state (of metal) (change of) ligand (change in) co-ordination number	allow (change the) number of ligands	$\begin{gathered} 1 \\ 1 \\ 1 \\ \text { AO1 } \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
07.4	tetrahedral	allow tetrahedron	$\begin{gathered} 1 \\ \text { AO3 } \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
07.5	$\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-}$		$\stackrel{1}{\mathrm{AO} 3}$
Question	Answers	Additional Comments/Guidelines	Mark
07.6	deep blue $\left[\mathrm{CuCl}_{4}\right]^{2-}+4 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{Cl}^{-}$	allow dark blue	$\begin{gathered} 1 \\ 1 \\ \text { AO3 } \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
07.7	$\left[\mathrm{Cu}(\text { EDTA) }]^{2-}\right.$	ignore absence of brackets	$\stackrel{1}{\text { AO3 }}$

Question	Answers	Additional Comments/Guidelines	Mark
08.1	MnO_{2}		$\begin{gathered} 1 \\ \mathrm{AO} 2 \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
08.2	allows ions to move/flow/transfer or to complete the circuit or acts as a salt bridge	ignore to allow current/charge to flow do not accept electrons to flow	$\begin{gathered} 1 \\ \mathrm{AO} 1 \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
08.3	$2 \mathrm{Ag}+\mathrm{ZnO} \rightarrow \mathrm{Zn}+\mathrm{Ag}_{2} \mathrm{O}$	ignore state symbols	$\begin{gathered} 1 \\ \mathrm{AO} 3 \end{gathered}$

Question	Answers	Additional Comments/Guidelines	Mark
08.4	$\begin{aligned} & \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}(\mathrm{aq}) \\ & E^{\ominus}=(+) 0.4(0)(\mathrm{V}) \end{aligned}$	ignore state symbols allow multiples	$\begin{gathered} 1 \\ 1 \\ \text { AO1 } \\ \text { AO2 } \end{gathered}$
Question	Answers	Additional Comments/Guidelines	Mark
08.5	same overall reaction or $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$		$\begin{gathered} 1 \\ \mathrm{AO} 2 \end{gathered}$

[^0]: Copyright information
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

 Copyright © 2022 AQA and its licensors. All rights reserved.

