Pearson Edexcel

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE
In Chemistry (9CH0) Paper 01
Advanced Inorganic and Physical Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 9CHO_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to
make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Acceptable Answer	Additional Guidance	Mark
$\mathbf{1 (a)}$	An answer that makes reference to the following points:	Mark independently	(2)
		Allow names in either order	
		Ignore symbols as well as names	
	• ammonium	(1)	Do not award ammonia
	• bromide	$\mathbf{(1)}$	Do not award bromine
		Allow (1) for just $\mathrm{NH}_{4} \mathrm{Br}$	

Question Number	Acceptable Answer	Additional Guidance	Mark
1(b)	A description that makes reference to the following points: - add (excess) dilute ammonia / dilute NH_{3} (to the precipitate) and the precipitate is insoluble / does not dissolve - add (excess) concentrated (aqueous) ammonia / concentrated NH_{3} (to the precipitate) and it is soluble / dissolves / forms a colourless solution (1)	Allow ammonium hydroxide for ammonia Ignore pure ammonia / ammonia with no concentration / ammonia gas Allow no change for the observation Allow 'if it dissolves it is not bromide' Allow redissolves for soluble Note If no other mark is awarded allow (1) for adding dilute and concentrated ammonia with no / incorrect observation(s) Alternative test: add concentrated sulfuric acid (1) brown fumes (1)	(2)

Question Number	Acceptable Answer	Additional Guidance	Mark
2(b)	An answer that makes reference to the following points: - identification of oxygen / O - identification of isotopes corresponding to any $3 \mathrm{~m} / \mathrm{z}$ values - Conditional on M2 awarded identification of isotopes corresponding to other $2 \mathrm{~m} / \mathrm{z}$ values	Isotopes in ions at each m / z value: $\begin{align*} & (32-){ }^{16} \mathrm{O}={ }^{16} \mathrm{O}^{+} /{ }^{16} \mathrm{O}^{2} \\ & (33-)^{16} \mathrm{O}={ }^{17} \mathrm{O}^{+} \\ & (34-)^{16} \mathrm{O}={ }^{18} \mathrm{O}^{+} \text {and }{ }^{17} \mathrm{O}={ }^{17} \mathrm{O}^{+} /{ }^{17} \mathrm{O}^{+}+ \\ & (35-)^{17} \mathrm{O}={ }^{18} \mathrm{O}^{+} \\ & (36-)^{18} \mathrm{O}={ }^{18} \mathrm{O}^{+} /{ }^{18} \mathrm{O}^{+} \tag{1} \end{align*}$ Allow single bonds Allow any other unambiguous ways of showing the masses of the isotopes for each m / z value e.g. $16+16, \mathrm{O}_{2}{ }^{16}$ Allow use of $\mathrm{X} /$ another symbol e.g. Cl instead of O for M2 and M3 Ignore missing charges as given in question Penalise negative charge once only	(3)

Question Number	Acceptable Answer	Additional Guidance	Mark
3(a)	An answer that makes reference to the following point: - to make sure that (all) the (nitric) acid / $\mathrm{HNO}_{3} / \mathrm{H}^{+}$has reacted / been neutralised / is used up	Allow (nitric acid) / HNO_{3} is the limiting reagent Allow so that 0.025 mol of water / $\mathrm{H}_{2} \mathrm{O}$ forms I gnore to make sure that 1 mol of water / $\mathrm{H}_{2} \mathrm{O}$ forms Ignore just 'to ensure that reaction is complete'	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
3(b)	- calculation of heat produced - calculation of amount (mol) of HNO_{3} (1) - calculation of enthalpy change - negative sign and units and answer to $2 / 1 \mathrm{SF}$	Example of calculation heat produced $=50.0 \times 4.18 \times 6.8=1421.2(\mathrm{~J}) /$ 1.4212 (kJ) amount HNO_{3} used $=25.0 \times 1.00 / 1000$ $=0.025 / 2.5 \times 10^{-2}(\mathrm{~mol})$ Ignore moles NaOH and total moles calculated enthalpy change $=\frac{1421.2}{0.025}=56848\left(\mathrm{~J} \mathrm{~mol}^{-1}\right)$ or $=\frac{1.4212}{0.025}=56.848\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ TE on heat produced and amount $\mathbf{H N O}_{3}$ final answer $-57 /-60 \mathrm{~kJ} \mathrm{~mol}^{-1}$ or $-57000 /-60000 \mathrm{~J} \mathrm{~mol}^{-1}$ TE on enthalpy change Do not award 3 SF Correct final answer with sign, units and 2 or 1 SF but no working scores (4) Ignore units and sign of enthalpy change in M1 and M3	(4)

Question Number	Answer	Mark
4(a)	The only correct answer is C	(1)
	A is not correct because it is $3 d^{3}$ not $3 d^{5}$	
	B is not correct because it is $3 d^{6}$ not $3 d^{5}$	

Question Number	Answer	Mark
$\mathbf{4 (b)}$	The only correct answer is C	(1)
	A is not correct because it is +1 not +3	
	B is not correct because it is +2 not +3	
D is not correct because it is +2 not +3		

Question Number	Answer	Mark
4(c)	The only correct answer is B	(1)
	A is not correct because covalent is missing	
C is not correct because it has ionic is incorrect		
D is not correct because it has ionic is incorrect		

Question Number	Answer	Mark
4(d)	The only correct answer is B	(1)
	\mathbf{A} is not correct because it is not an explanation	
	\mathbf{C} is not correct because the d-orbitals can be split in energy	
D is not correct because there are ten electrons in the d-subshell		

Question Number	Acceptable Answer	Additional Guidance	Mark
4(e)	- 2 glycinate ligands attached to Cu through nitrogen atoms - 2 glycinate ligands attached to Cu through single bonded oxygen atoms and rest of structure correct	Example of structure Allow the two ligands attached to any 2 pairs of adjacent bonds Allow cis or trans isomer / delocalised carboxylate groups / skeletal formulae I gnore bond lengths and bond angles I gnore lone pairs of electrons, charge on the copper or oxygen ions and direction of dative covalent bonds Do not award M 1 if bond between Cu and H of NH_{2}	(2)

Question Number	Acceptable Answer	Additional Guidance	Mark
4(f)	An explanation that makes reference to the following points: - (the initial rate of reaction is slow) because both reacting species are negatively charged / repel each other or the reaction has a high activation energy / few particles have energy greater than (or equal to) the activation energy - (the rate of reaction increases) because $\mathbf{M n}^{\mathbf{2 +}}$ ions (are formed) and they act as a catalyst / are autocatalytic / provide an alternative route with a lower activation energy - (the rate decreases) because the concentrations /amounts of the reactants decrease / the reactants are used up	Allow because there is no catalyst / no Mn^{2+} ions present at the start Allow a description of how the Mn^{2+} ions are acting as a catalyst e.g. the idea of Mn^{2+} ions reacting and being regenerated Do not award 'enzyme' Allow example of one of the reagents used up / becoming a limiting factor Do not award 'the Mn^{2+} ions are used up'	(3)

Question Number	Acceptable Answer		Additional Guidance	Mark
5(a)	- (high resistance) voltmeter - platinum /Pt (electrode) - manganese(II) and manganese(III) ions / Mn^{2+} and Mn^{3+}	(1) (1) (1)	Allow potentiometer / Wheatstone bridge / just 'V' Ignore high voltage Do not award voltameter Ignore just 'inert metal' Do not award manganese / Mn Allow any named manganese(II) salt and manganese(III) salt Ignore concentration and units	(3)

Question Number	Acceptable Answer	Additional Guidance	Mark
$\mathbf{5 (b) (i)}$	- potassium nitrate $/ \mathrm{KNO}_{3}$	If name and formula are given, both must be correct If more than one substance given, all must be correct Allow potassium chloride $/ \mathrm{KCl}$ sodium nitrate $/ \mathrm{NaNO}$ sodium chloride $/ \mathrm{NaCl}$ ammonium nitrate $/ \mathrm{NH}_{4} \mathrm{NO}_{3}$ ammonium chloride $/ \mathrm{NH}_{4} \mathrm{Cl}$ Ignore concentration	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
5(b)(ii)	- wire does not allow the flow of ions or wire (only) allows flow of electrons or salt bridge allows flow of ions or salt bridge does not allow the flow of electrons or a flow of ions is needed to complete the circuit or ions (need to) flow between the half-cells / between the solutions	Allow any indication of movement for flow in all points Allow the salt bridge donates / removes ions (to balance the charges in the solution and the wire does not do this) Ignore just 'the circuit is not complete' Ignore references to changes in potential difference $/ E^{\ominus} / E^{\circ}$ cell	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
5(c)(i)	- correct equation	Example of equation $2 \mathrm{Mn}^{3+}+\mathrm{Cu} \rightarrow 2 \mathrm{Mn}^{2+}+\mathrm{Cu}^{2+}$ Allow multiples Allow \rightleftharpoons provided equation is written in the direction shown Ignore state symbols, even if incorrect Ignore cancelled electrons e.g. $2 \mathrm{Mn}^{3+}+\mathrm{Cu}+2 \mathrm{e} \rightarrow 2 \mathrm{Mn}^{2+}+\mathrm{Cu}^{2+}+2 \mathrm{e}$ Do not award equation with uncancelled electrons	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
$\mathbf{5 (c) (\text { ii })}$	$-\mathrm{E}^{-}=1.15-(-0.34)=(+) 1.49(\mathrm{~V})$	Stand alone mark Correct answer with no working scores the mark	(1)

(Total for Question 5 = 7 marks)

Question Number	Answer	Mark
$\mathbf{6 (a)}$	The only correct answer is \mathbf{D}	(1)
	A is not correct because it is the $2^{\text {nd }}$ most soluble	
B is not correct because it is the $3^{\text {rd }}$ most soluble		
C is not correct because it is the least soluble		

Question Number	Acceptable Answer	Additional Guidance	Mark
$\mathbf{6 (b) (i)}$An answer that makes reference to the following point: - the concentration of a solid $/ \mathrm{Mg}(\mathrm{OH})_{2}$ is constant / unchanged / changes very little	Allow magnesium hydroxide is in a different phase / state (from the aqueous ions)	Ignore solids do not appear in Kc expressions / just 'it is solid' Ignore solid does not affect the concentration of the solution Ignore it is a heterogeneous equilibrium Ignore it is difficult to measure the concentration of a solid Do not award the solid does not have a concentration	

Question Number	Acceptable Answer	Additional Guidance	Mark
$\mathbf{6 (b) (i i)}$	$\mathrm{mol}^{3} \mathrm{dm}^{-9}$	Allow $\mathrm{dm}^{-9} \mathrm{~mol}^{3}$ $\mathrm{~mol}^{3} / \mathrm{dm}^{9}$ Ignore any working before the answer	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
6(b)(iii)	- use of $\Delta_{\text {sol }} H=\Delta_{\text {hyd }} H\left[\mathrm{Mg}^{2+}(\mathrm{aq})\right]+2 \Delta_{\text {hyd }} \mathrm{H}\left[\mathrm{OH}^{-}(\mathrm{aq})\right]-$ $\Delta_{\text {latt }} \mathrm{H}\left[\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})\right]$ - calculation of $\Delta_{\text {sol }} \mathrm{H}$	Example of calculation $\Delta_{\text {sol }}=-1920+2(-460)-(-2842)$ Allow this shown on a Hess cycle $\Delta_{\text {sol }} \mathrm{H}=(+) 2\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Allow $2000 \mathrm{~J} \mathrm{~mol}^{-1}$ Correct answer with no working scores 2	(2)

Question Number	Answer	Mark
$\mathbf{6 (b) (i v)}$	The only correct answer is \mathbf{D}	(1)
	A is not correct because it should not be linear and should level off	
	B is not correct because it should not increase in that way and should level off	
C is not correct because it should not be horizontal		

Question Number	Acceptable Answer	Additional Guidance	Mark
6(b)(v)	An answer that makes reference to the following points: Addition of magnesium sulfate solution: - equilibrium position shifts to the left / in the backwards direction - because increased concentration / amount of magnesium ions / $\mathrm{Mg}^{2+}((\mathrm{aq}))$ Addition of dilute hydrochloric acid: - equilibrium shifts to the right / in the forwards direction - because the hydrogen ions / $\mathrm{H}^{+}((\mathrm{aq}))$ react with / neutralise / removes the hydroxide ions / $\mathrm{OH}^{-}((\mathrm{aq}))$ (1)	Mark independently Allow more magnesium hydroxide precipitates / forms Allow more Mg^{2+} ions present Allow more magnesium hydroxide dissolves / dissociates Allow $\mathrm{H}^{+}((\mathrm{aq}))+\mathrm{OH}^{-}((\mathrm{aq})) \rightarrow \mathrm{H}_{2} \mathrm{O}((\mathrm{I}))$ Allow magnesium hydroxide reacts with / is neutralised by acid / equation to show this Allow acid / HCl reacts with / neutralises / removes hydroxide ions Penalise reference to K_{c} changing once onlv	(4)

Question Number	Acceptable Answer	Additional Guidance	Mark
$\mathbf{7 (a)}$	- correct equation	Examples of equation $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{HCl} \rightarrow 4 \mathrm{H}_{3} \mathrm{BO}_{3}+2 \mathrm{NaCl}+5 \mathrm{H}_{2} \mathrm{O}$ $\mathbf{o r}$ $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{HCl} \rightarrow 4 \mathrm{~B}(\mathrm{OH})_{3}+2 \mathrm{NaCl}+5 \mathrm{H}_{2} \mathrm{O}$ Allow multiples Allow reversible arrow provided the equation is written in the direction shown. Ignore state symbols, even if incorrect	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
7(b)(i)	- all 6 bonding pairs correct - 2 lone pairs on each O and no additional electrons on boron or hydrogen	Example of diagram Non-bonding electrons on O can be shown as pairs, all 4 together or as 3 and 1 Electrons in overlap regions can be on the lines or the gaps between the lines Allow (1) for electrons in correct places but incorrect symbols for electrons Ignore inner shell electrons shown on B and/or O Note If any double bonds are shown the answer scores (0)	(2)

Question Number	Answer	Mark
$\mathbf{7 (b) (i i)}$	The only correct answer is C	(1)
	A is incorrect because 109.5° is incorrect	
	B is incorrect because 109.5° and 180° are incorrect	

$\begin{array}{l}\text { Question } \\ \text { Number }\end{array}$	Answer	Mark
$\mathbf{7 (c)}$	The only correct answer is B	(1)
	A is incorrect because covalent bonds are within molecules not between molecules	
C is incorrect because there are no ionic bonds		
D is incorrect because London forces are not the strongest force		

Question Number	Acceptable Answer	Additional Guidance	Mark
7(d)(i)	- calculation of K_{a} - calculation of $\left[\mathrm{H}^{+}\right]$ - calculation of pH	Example of calculation $K_{a}=10^{- \text {pKa }}=10^{-9.24}=5.7544 \times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $\left[\mathrm{H}^{+}\right]=\sqrt{ } \mathrm{K}_{a}\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]=\sqrt{ } 5.7544 \times 10^{-10} \times 0.05$ $=5.364 \times 10^{-6}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ TE on Ka $\begin{aligned} \mathrm{pH} & =-\log _{10}\left[\mathrm{H}^{+}\right]=-\log _{105} 5.364 \times 10^{-6} \\ & =5.2705 / 5.271 / 5.27 / 5.3 \end{aligned}$ TE on [H^{+}] provided pH is >2 and <7 Accept alternative methods, for example $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\sqrt{ } \mathrm{K}_{\mathrm{a}}\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]} \\ & \mathrm{pH} \end{aligned}=1 / 2 \mathrm{pKa}-1 / 2 \log \left[\mathrm{H}_{3} \mathrm{BO}_{3}\right](\mathbf{1)})$ Alternative method: $\begin{aligned} & \mathrm{K}_{\mathrm{a}}=10^{-\mathrm{pKa}}=10^{-9.24}=5.7544 \times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathbf{1}) \\ & {\left[\mathrm{H}^{+}\right]^{2}=\mathrm{K}_{\mathrm{a}}\left(\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]-\left[\mathrm{H}^{+}\right]\right)} \\ & \quad=5.7544 \times 10^{-10} \times\left(0.05-\left[\mathrm{H}^{+}\right]\right) \\ & {\left[\mathrm{H}^{+}\right]=5.135 \times 10^{-6}(\mathbf{1})} \\ & \mathrm{pH}=5.29(\mathbf{1}) \end{aligned}$ Ignore SF except 1SF Correct answer without working scores 3 marks	(3)

Question Number	Acceptable Answer	Additional Guidance	Mark
7(d)(ii)	An answer that makes reference to the following points: - $\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}\right]$ or no H^{+}from the (ionisation of) water / ionisation of water is negligible or H^{+}is only from the acid or no H^{+}from ionisation of $\mathrm{H}_{2} \mathrm{BO}_{3}^{-}$ - ionisation / dissociation of the acid is negligible / very small / insignificant or $\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]_{\text {initial }}=\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]_{\text {equilibrium }}$ or $\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]_{\text {equilibrium }}=0.05\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ or $\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}_{2} \mathrm{BO}_{3}{ }_{-}\right] \ll\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]$ or [$\mathrm{H}_{3} \mathrm{BO}_{3}$] / acid concentration remains constant or $\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]_{\text {equilibrium }}=\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]_{\text {initial }}-\left[\mathrm{H}^{+}\right]$used in calculation in (i)	Allow [A-] for [$\mathrm{H}_{2} \mathrm{BO}_{3}^{-}$] / [HA] for [$\mathrm{H}_{3} \mathrm{BO}_{3}$] Allow any of the expressions described in words Allow approximately equal to for $=$ (in symbols or words) Ignore reference to standard conditions Do not award two marks from the same marking point Allow the effect of the third ionisation is negligible Ignore partial dissociation / not completely dissociated Do not award $\mathrm{H}_{3} \mathrm{BO}_{3}$ / [HA] is completely dissociated	(2)

Question Number	Answer	Mark
$\mathbf{7 (\mathbf { e })}$	The only correct answer is B	(1)
	A is not correct because it is the conjugate base not acid	
C is not correct because it is not the conjugate acid		

Question Number	Acceptable Answer		Additional Guidance			Mark
8(a)(i)	- any 2 correct - all 3 correct	(1) (2)	Example of table			(2)
			$1^{\text {st }}$ IE	$2^{\text {nc }}$ IE	$3^{\text {rd }}$ IE	
			(590)	(1145)	(4912)	
			4 s	45	3p	
			Accept $3 p_{x} / 3 p_{y} / 3 p_{z}$ for $3^{\text {rd }}$ IE Ignore any superscript numbers by 4 s and $3 p$ Allow (1) for just 's, s, p' or 's, s, p' with one or more incorrect numbers in front			

Question Number	Acceptable Answer	Additional Guidance	Mark
$\mathbf{8 (a) (\text { ii) }}$	- correct equation	Examples of equations $\mathrm{Ca}^{2+}(\mathrm{g}) \rightarrow \mathrm{Ca}^{3+}(\mathrm{g})+\mathrm{e}^{(-)}$ $\mathbf{o r}$ $\mathrm{Ca}^{2+}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Ca}^{3+}(\mathrm{g})$ Correct state symbols are required 	Ignore any state symbol for the electron

Question Number	Acceptable Answer	Additional Guidance	Mark
8(a)(iii)	An explanation that makes reference to the following points: - (there is a much larger difference between the $2^{\text {nd }}$ and $3^{\text {rd }}$ ionisation energies because the) $3^{\text {rd }}$ electron is lost from a shell / energy level / subshell / (3p) orbital closer to the nucleus or the 3rd electron is lost from a shell / energy level / sub-shell / (3p) orbital of lower energy - (there is a smaller difference between the $1^{\text {st }}$ and $2^{\text {nd }}$ ionisation energies because the) $1^{\text {st }}$ and $2^{\text {nd }}$ electrons removed from the same shell / energy level / sublevel / orbital or the first two electrons experience similar shielding (from the inner electrons) or there is only a small change in electron-electron repulsion as the first two electrons are removed	I gnore electron is lost from a full (sub-)shell / a full (sub-)shell is more stable Ignore just ' 3 rd electron lost is more strongly attracted to the nucleus' Allow the same amount of shielding Allow the 3rd electron (to be lost) experiences less shielding (from inner electrons)	(2)

Question Number	Answer	Mark
$\mathbf{8 (b)}$	The only correct answer is B	(1)
	A is incorrect because $(-1031)+(79+520+159)$ is incorrect	
	\mathbf{C} is incorrect because $(-1031)+(79+520)$ is incorrect	

Question Number	Acceptable Answers	Additional Guidance	Mark
8(c)*	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content. The following table shows how the marks should be awarded for structure and lines of reasoning.	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages). In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0,1 or 2 indicative points would score zero marks for reasoning.	(6)

	Number of marks awarded for structure of answer and sustained line of reasoning
Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout.	2
Answer is partially structured with some linkages and lines of reasoning.	1
Answer has no linkages between points and is unstructured.	0

Comment:

Look for the indicative marking points first, then consider the mark for structure of answer and sustained line of reasoning

General points to note

If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s).
e.g.
penalise any reference to 'molecule' once only
or
penalise 'ion' not mentioned in word or formula at least once in answer, once only

Allow reverse arguments for IP3 to IP6 Ignore mention of stoichiometry Ignore references to electroneqativity

I ndicative content

- IP1-Ionic
lithium chloride / LiCl (has very similar theoretical and experimental lattice energy values so) is (almost 100\%) ionic
- IP2-Covalency
magnesium iodide / Mgl_{2} (has different theoretical and experimental lattice energy values so) has (some) covalent character
- IP3-Charge on cations magnesium is Mg^{2+} and lithium is Li^{+}
- IP4 - Polarising - what does the polarising magnesium ion/ Mg^{2+} is (more) polarising / has a large(r) polarising power (than lithium ion)
- IP5-Size of anion
iodide ion / I^{-}is larger (than chloride ion / Cl^{-})
- IP6 - Polarisable - what is polarised iodide ion / I^{-}is (more easily) polarised / distorted

Allow very small amount of / no covalent character in LiCl
Allow assumption that ions act as point charges / are spherical is true for LiCl

Allow Mgl_{2} more covalent character than LiCl

Allow magnesium has $2+$ charge and lithium has 1+ charge / magnesium ion has a larger charge than a lithium ion
Allow charge density for charge

Allow iodine ion / I^{-}is a large atom / has a large atomic radius
I gnore size of cation
Do not award iodide has a larger charge density

Allow this shown in a diagram Ignore just 'greater attraction to cation'

Question Number	Acceptable Answer	Additional Guidance	Mark
9(a)	- all 3 correct - any 2 correct (1)	Example of table	(2)
		Reaction \quad Sign of Δ Ssystem	
		$\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~s}) \quad$ positive $/+/+\mathrm{ye} /$ plus	
		$\mathrm{NaCl}(\mathrm{s})+\mathrm{aq} \rightarrow \mathrm{NaCl}(\mathrm{aq}) \quad$ positive $/+/+\mathrm{ve} /$ plus	
		$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad$ negative / - / -ve/ / minus	

Question Number	Acceptable Answer	Additional Guidance	Mark
9(b)	- use of $\Delta \mathrm{S}_{\text {surroundings }}=-\Delta \mathrm{H} / \mathrm{T}$ - calculation of $\Delta \mathrm{S}_{\text {surroundings }}$ - calculation of $\Delta \mathrm{S}_{\text {total }}$ and sign and units	Example of calculation $\begin{equation*} -(178000 \div 298) /-(178 \div 298) \tag{1} \end{equation*}$ $-597(.315)\left(\mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ or $-0.597(315)\left(\mathrm{kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ TE on equation with minus sign missing $\begin{aligned} & \frac{160}{1000}+(-0.597315)=-0.437(315) \mathrm{kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\ & \text { or } \\ & 160+(-0.597315 \times 1000) \\ & =-437 .(315) \mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$ TE on $\Delta \mathrm{S}_{\text {surroundings }}$ Allow correct units shown once in answer for $\Delta \mathrm{S}_{\text {total }}$ or $\Delta \mathrm{S}_{\text {surroundings }}$ Ignore SF except 1SF Correct answer with sign and units without working scores 3 marks	(3)

Question Number	Acceptable Answer	Additional Guidance	Mark
9(c)(i)	- correct working - correct answer and sign	$\begin{align*} & \text { Example of calculation } \\ & (2 \times 95.6)-((2 \times 248.1)+205.0) / \tag{1}\\ & (2 \times 95.6)-(2 \times 248.1)-205.0 \\ & -510(.0)\left(\mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & \text { or } \\ & -0.510\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ TE on working Ignore SF except 1SF Correct answer with sign and without working scores both marks	(2)

Question Number	Acceptable Answer	Additional Guidance	Mark
9(c)(ii)	- use of $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}_{\text {system }}$ - calculation of $\Delta \mathrm{G}$ and sign and units - ΔG is negative / less than $0 /<0$ and so the reaction is feasible	Example of calculation The equation may be stated or numbers substituted directly e.g. $-288.4-(298 x-0.510) /-288400-(298 x$ -510) $-136(.42) \mathrm{kJ} \mathrm{~mol}^{-1} /-136420 \mathrm{~J} \mathrm{~mol}^{-1}$ TE on $\Delta \mathrm{S}_{\text {system }}$ in (i) Ignore SF except 1SF Correct answer with sign and units without working scores both marks Conditional on a stated number TE on sign of $\Delta \mathrm{G}$: $\Delta \mathrm{G}$ is positive / greater than $0 />0$ so the reaction is not feasible	(3)

Question Number	Acceptable Answer		Additional Guidance	Mark
9(c)(iii)	- use of $\Delta G=-R T \operatorname{lnK}$ - rearrangement of equation and substitution of correct values - calculation of K	(1) (1) (1)	$\begin{aligned} & \frac{\text { Example of calculation }}{-60000=-8.31 \times 700 \operatorname{lnK}} \\ & (\operatorname{lnK}=-\Delta G / R T) \\ & \operatorname{lnK}=\frac{-(-60000)}{(8.31 \times 700)} \\ & \text { Allow } \operatorname{lnK}=\frac{60000}{8.31 \times 700} \end{aligned}$ Allow InK = 10.3146 / 10.315 / 10.32 / 10.3 / 10 TE on equation, provided equation involves all of $\Delta G, K, R$ and T and no others e.g. S $K=e^{10.315}=3.016975 \times 10^{4} / 30169.75$ TE on InK expression / value Allow answers based on earlier correct rounding Ignore SF including 1SF I gnore units Correct answer without working scores 3 marks	(3)

Question Number	Acceptable Answer	Additional Guidance	Mark	
9(c)(iv)	An explanation that makes reference to any two of the following points: - Yield - even though the (percentage) yield / amount of SO_{3} is higher at $298 \mathrm{~K} /$ lower temperature - Rate - the rate of reaction is slower at $298 \mathrm{~K} /$ lower temperature - Compromise - so 700 K is a compromise between a (high) yield and (high) rate	Allow reverse argument for M1 and M2 Ignore reference to changing the pressure Allow the unused reactants can be recycled to increase the yield / products are removed to increase the yield Allow the reaction does not reach equilibrium in industry so there is no effect on the yield Ignore just a reference to `equilibrium shifting' Ignore references to activation energy Allow at 700 K the amount of product per unit time is larger Ignore just ' 700 K is more economically viable' Note If three points are made related to yield, rate and compromise and one of these is incorrect, maximum mark is (1) for 1 correct point	(2)	
Question Number	Acceptable Answer	Additional Guidance	Mark	
:---	:---	:---	:---:	
$\mathbf{1 0 (a)}$	- correct equation	Examples of equations $\mathrm{Cu}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{NO}_{3}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{Cu}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Allow multiples Allow \rightleftharpoons provided equation is written in the direction shown Ignore state symbols, even if incorrect Ignore cancelled electrons Ignore Ag or Au on both sides		
Question Number	Acceptable Answer	Additional Guidance	Mark	
:---	:---	:---	:---	:---:
$\mathbf{1 0 (b)}$	• Indicator: starch	(1)		(2)
	Colour change: Starting colour: blue/black or blue or black Final colour: colourless	(1)	M2 is conditional on starch or no indicator	
Ignore mention of precipitate				
Ignore other words to describe colour e.g. deep / dark Ignore clear				
Question Number	Answer	Additional Guidance	Mark	
:---:	:---:	:---:	:---:	
10(c)	- calculation of moles of silver chloride - calculation of mass of silver - calculation of moles of Cu^{2+} - calculation of mass of copper - calculation of percentage of gold		(6)	
	- deduction that alloy is 9 carat gold (1)	Conditional on some correct working to show the percentage of gold If calculated \% is not 37.5, allow: calculated value of carat ($24 \times$ their percentage/100) or 'less than 9 carat gold' if calculated \% is less than 37.5\% or nearest carat value from table or a (rough) interpolated carat value or between the two relevant carat values		
:---:	:---:	:---:	:---:	

