Pearson Edexcel

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE
In Chemistry (8CH0) Paper 02
Core Organic and Physical Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 8CH0_02_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Acceptable Answer	Mark
$\mathbf{1}$	The only correct answer is A	
	B is incorrect because $\mathrm{H}_{2} \mathrm{O}$ is a nucleophile - via lone pairs	
C is incorrect because NH_{3} is a nucleophile - via lone pair		
D is incorrect because CN^{-}is a nucleophile - via lone pairs	(1)	

Question Number	Acceptable Answer	Additional Guidance	Mark
2 (a)(i)	- converts temperature to Kelvin and pressure to $\begin{equation*} \mathrm{Nm}^{-2}(\mathrm{~Pa}) \tag{1} \end{equation*}$ - rearranging ideal gas equation and substituting their values - evaluates answer to 2 SF and includes units	$\begin{aligned} & \frac{\text { Examples of calculation }}{60^{\circ} \mathrm{C}=333 \mathrm{~K}} \\ & 500 \mathrm{kPa}=5 \times 10^{5} / 500000 \mathrm{~Pa} \\ & \mathrm{~V}=\frac{\mathrm{nRT}}{\mathrm{P}} \\ & \mathrm{~V}=1 \times 8.31 \times 333 / 500000 \\ & =5.53446 \times 10^{-3} \\ & =0.0055 \mathrm{~m}^{3} / 5.5 \times 10^{-3} \mathrm{~m}^{3} / 5.5 \mathrm{dm}^{3} / 5500 \mathrm{~cm}^{3} \\ & \text { allow } \mathrm{TE} \\ & \text { answers to } 2 \mathrm{SF} \text { only } \\ & \text { correct answer with no working scores } 3 \text { marks } \\ & \text { correct answer with incorrect working scores } 2 \\ & \text { marks max. } \end{aligned}$	(3)

Question Number	Acceptable Answer	Additional Guidance	Mark
2(a)(ii)	- calculates M_{r} to 2 or more SF - identifies element X (1)	```Example of calculation: molar mass = mass in 24000 cm}\mp@subsup{}{}{3 =1.42 x 24000/1000 = 34(.08)(g mol``` ignore SF except 1 SF $\begin{aligned} & (X+(3 \times 1))=34 \\ & X=31 \text { so } P / \text { phosphorus } \end{aligned}$ just 'phosphorus' with no working scores M2 only	(2)

Question Number	Acceptable Answer	Additional Guidance	Mark
2(b)(i)	- calculates moles of acid - calculates moles of sodium carbonate - recognises that (sodium) carbonate is in excess - evidence for excess sodium carbonate in terms of moles - correct volume of gas calculated with units (1)	$\begin{align*} & \text { Example of calculation } \\ & \text { moles of acid }=10.0 \times 0.400 / 1000 \\ & =4(.0) \times 10^{-3} / 0.004(\mathrm{~mol}) \\ & \text { moles of sodium carbonate }=0.242 / 106.0 \tag{1}\\ & =2.283 \times 10^{-3} / 0.002283(\mathrm{~mol}) \end{align*}$ recognition of $\mathrm{HCl}: \mathrm{Na}_{2} \mathrm{CO}_{3}=2: 1$ gets M 4 $4.0 \times 10^{-3} \mathrm{~mol}$ acid requires $2.0 \times 10^{-3} \mathrm{~mol}$ sodium carbonate OR $2.283 \times 10^{-3} \mathrm{~mol}$ of sodium carbonate requires $4.566 \times 10^{-3} \mathrm{~mol}$ of acid moles $\mathrm{CO}_{2}=2.0 \times 10^{-3}(\mathrm{~mol})$ volume of gas $=2.0 \times 10^{-3} \times 24000$ $=48 \mathrm{~cm}^{3} / 0.048 \mathrm{dm}^{3}$ TE on incorrect moles CO_{2} correct answer with no working scores 1 mark if the moles of sodium carbonate are not calculated, only M1, M4 and M5 can be awarded. ignore SF except 1 for M5	

Question Number	Acceptable Answer	Additional Guidance	Mark
2(b)(ii)	An answer that makes reference to the following reasons: - some gas escaped before the bung/delivery tube was replaced - the gas / carbon dioxide is (slightly) soluble in water/ acid / solution	ignore references to change in volume when the bung is pushed into the test tube allow 'temperature less than $25^{\circ} \mathrm{C} / 298 \mathrm{~K} /$ room temperature' as alternative to either answer do not award an incomplete reaction do not award leaky apparatus/sticking syringe	(2)

Question Number	Acceptable Answer		Additional Guidance	Mark
3(a)	- K_{c} expression - units based on their K_{c} expression	(1) (1)	$\left(\mathrm{K}_{\mathrm{c}}=\right) \frac{\left[\mathrm{N}_{2}(\mathrm{~g})\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right]^{6}}{\left[\mathrm{NH}_{3}(\mathrm{~g})\right]^{4}\left[\mathrm{O}_{2}(\mathrm{~g})\right]^{3}}$ ignore missing state symbols do not award round brackets $\mathrm{mol} \mathrm{dm}^{-3}$ or $\mathrm{mol} / \mathrm{dm}^{3}$	(2)

Question Number	Acceptable Answer		Additional Guidance	Mark
3(b)(i)	- calculates $\sum \Delta_{f} H$ (products) - $\sum \Delta_{f} H$ (products) $-\Delta_{r} H$ - calculates $\Delta_{f} H_{(N H 3)}$ for 1 mol ammonia	(1) (1) (1)	Example of calculation $\begin{aligned} & (+90.4 \times 4)+(-241.8 \times 6)=-1089.2 \\ & -1089.2-(-904.8)=-184.4 \\ & -184.4 / 4=-46.1\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ TE from M1 to M2 M3 can be awarded for an incorrect answer to M2 divided by 4 correct answer with no working scores 3 marks	(3)

Question Number	Answer Acceptable		Additional Guidance	Mark
3(b)(ii)	- correct expression - correct evaluation of atom economy	(1)	Example of calculation $\frac{4 \mathrm{NO}}{4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}}$ OR $\frac{4 \mathrm{NO}}{4 \mathrm{NH}_{3}+5 \mathrm{O}_{2}}$ may be shown as numbers only $\frac{4(14+16)}{4(14+16)+6(16+2)} \times 100$ OR $\begin{aligned} & \frac{4(14+16)}{4(14+3)+5(16 \times 2)} \times 100 \\ & =53 / 52.6(316)(\%) \end{aligned}$ allow answer to 2 or 3 SF only correct answer with no working scores 2 marks 0.53/0.526 scores M1 only	(2)

Question Number	Acceptable Answer	Additional Guidance	Mark
3(c)(i)	An answer that makes reference to the following points: - yield (of NO) decreases - increase in pressure shifts equilibrium (position) to the side of fewer moles (of gas molecules) (1)	if M1 and M2 are contradictory then do not award any marks allow 9 mol on LHS and 10 mol on RHS, may be shown above the equation allow more moles of product allow fewer moles of reactant allow marking points in either order	(2)

Question Number	Acceptable Answer	Additional Guidance	Mark
3(c)(ii)	An answer that makes reference to the following points: (on increasing the pressure) (Rate increases because there are more molecules per unit volume	(1)	allow increase in concentration of (gas) molecules allow any implication of more particles in a given volume, e.g. particles are closer together
	so increase in frequency of collisions (between reacting molecules)	(1)	allow more collisions per unit time ignore just 'more collisions'/'more successful collisions' with no reference to time allow answers based on a solid catalyst

Question Number	Acceptable Answer	Additional Guidance	Mark
$\mathbf{3 (c) (\text { iii) }}$	An answer that makes reference to: -heterogeneous: (the catalyst is in) a different phase/state to the reactants (1) increases the rate of the forward and backward / reverse reactionsignore reference to products		

Question Number	Acceptable Answer	Mark
$\mathbf{3 (d)}$	The only correct answer is B	
	\mathbf{A} is not correct because there is no increase in number of particles	
	\mathbf{C} is not correct because distribution broadens as temperature rises, so peak is lower	

Question Number	Acceptable Answer		Additional Guidance	Mark
4(a)(i)	Reagent - (concentrated) $\mathrm{NaOH} / \mathrm{KOH}$	(1)	do not award OH^{-}or just 'hydroxide' do not award M1 if 'acidified'	
	Conditions - ethanol (solvent) and heat/warm	(1)	allow reflux M2 is dependent on M1 except for a near miss e.g. OH^{-}	(2)

Question Number	Acceptable Answer	Additional Guidance	Mark
4(a)(ii)	Reagent: $\mathrm{KCN} / \mathrm{NaCN} /$ potassium cyanide / sodium cyanide (1)	ignore any mention of the solvent (aq ethanol) and conditions (reflux) do not award just CN-/cyanide/HCN	
Beason: increases the number of carbon atoms in the carbon chain/ length of carbon chain	(1)		

Question Number	Acceptable Answer	Additional Guidance	Mark
$\mathbf{4 (a) (\text { iii) }}$	An explanation that makes reference to the following: - heating increases rate (of reaction) - (1) no sealed tube would result in loss of ammonia (gas)/ reactants / gas	(1)	ignore reference to activation energy/ starting the reaction/ reaction is endothermic ignore toxicity of reactants

| Question
 Number | Acceptable Answer | Mark |
| :--- | :---: | :--- | :--- |
| 4(a)(iv) | $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ | Additional Guidance |
| | | ignore name displayed/structural/skeletal formula |
| | do not award just $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ | |

Question Number	Acceptable Answer	Mark
$\mathbf{4 (b)}$	The only correct answer is B	
	A is not correct because $\mathrm{Z}\left(3^{\text {rd }}\right)$ is tertiary (fastest)	
	C is not correct because $Y\left(2^{\text {nd }}\right)$ is primary (slower than X, secondary)	
	D is not correct because $X\left(1^{\text {st }}\right)$ is secondary (slower than Z, tertiary)	(1)

Question Number	Acceptable Answer	Mark
$\mathbf{5 (a) (\mathbf { i })}$	The only correct answer is B	
	A is not correct because reaction is not substitution	
	\mathbf{C} is not correct because reaction is not substitution, nor nucleophilic	

Question Number	Acceptable Answer	Mark
$\mathbf{5 (a) (\text { ii) }}$	The only correct answer is C	
	A is not correct because no C=C present	
	B is not correct because no C=C present	

| Number | | | |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{5 (b) (i)}$ | must show two repeat units fully displayed | | |
| allow head to head, head to tail, tail to tail, | | | |
| syndiotactic and isotactic stuctures | | | |
| do not award any other type of formula | (1) | | |

Question Number	Acceptable Answer	Additional Guidance	Mark
$\mathbf{5 (b) (i i)}$	An explanation that makes reference to the following: • (incineration produces) $\mathrm{HCl} /$ chlorinated molecules (1)	M2 is dependent on M1 allow chlorine ignore carbon dioxide and its consequences allow adverse effect on ozone layer	
	- which are corrosive/toxic /cause acid rain	(1)	

Question Number	Acceptable Answer	Additional Guidance	Mark
5(b)(iii)	An answer that makes reference to the following: any appropriate precautions to deal with toxic vapours/use fume cupboard etc.	allow good ventilation required allow gas mask/respirator do not award just mask ignore gloves, lab coat	Additional Guidance

Number			
$\mathbf{5 (c) (i)}$	An answer that makes reference to the following: - at lower temperatures (below $50^{\circ} \mathrm{C}$) the reaction will be slow (1) at higher temperatures (above $80^{\circ} \mathrm{C}$) yield will be lower because (forward) reaction is exothermic	allow reverse argument	allow other products produced at higher temperatures

Question Number	Acceptable Answer	Mark
$\mathbf{5 (c) (i i)}$	The only correct answer is A	
	B is not correct because separating funnel is inappropriate for an industrial process	
	\mathbf{C} is not correct because not a separation process	
D is not correct because both will react with alkaline solution	(1)	

Question Number	Acceptable Answer	Additional Guidance	Mark
6(a)(i)	Reagent: - B is hydrogen / H_{2} (gas) Condition: - nickel/ Ni (catalyst)	mark independently allow any other suitable transition metal catalysts eg Pt, Pd ignore additional information relating to the support for the catalyst ignore references to heating/pressure/UV	(2)

Question Number	Acceptable Answer	Mark
$\mathbf{6 (a) (\text { ii) }}$	The only correct answer is C	
	A is not correct because water is not involved	
	B is not correct because there is no increase in number of oxygen atoms	
D is not correct because no substitution has taken place	(1)	

Question Number	Acceptable Answer	Additional Guidance	Mark
6(a)(iii)	margarine	allow liquid coal allow butter substitute do not award just butter	(1)

Question Number	Acceptable Answer	
*6(b)	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content.	
	Number of indicative marking points seen in answer	Number of marks awarded for indicative marking points
	6	4
	5-4	3
	3-2	2
	1	1
	0	0
	The following table shows how the marks should be awarded for structure and lines of reasoning.	
		Number of marks awarded for structure and sustained lines of reasoning
	Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout.	2
	Answer is partially structured with some linkages and lines of reasoning.	1
	Answer has no linkages between points and is unstructured.	0

Additional Guidance
Guidance on how the mark scheme should be applied:

The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning, scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning).

If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).

In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0,1 or 2 indicative points would score zero marks for reasoning.

If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s).

Comment: Look for the indicative marking points first, then consider the mark for the structure of the answer and sustained line of reasoning.

I ndicative content:

- calculate approximate mass of solute to be weighed out
- details of how to weigh out required mass
- transfer solute to beaker/conical flask and add distilled/deionised water and dissolve
- transfer to ($250 \mathrm{~cm}^{3}$) volumetric flask
- add washings from beaker
- make up to mark/line and shake/invert (to mix).

Ignore anything to do with oxidation even if incorrect
example of calculation
$0.050 \mathrm{~mol} \mathrm{dm}^{-3}=0.050 \times 118 \mathrm{~g} \mathrm{dm}^{-3}$

$$
=5.90 \mathrm{~g} \mathrm{dm}^{-3}
$$

$$
=1.47(5) \mathrm{g} \text { in } 250 \mathrm{~cm}^{3}
$$

do not award just 'weigh by difference'
transfer of solute directly to volumetric flask gets IP3 and IP4 but must mention dissolving for IP3
any mention of volumetric/graduated flask scores IP4
direct transfer from weighing container to volumetric flask must mention washing of solute into the flask (e.g. through funnel). mix on its own is insufficient

Question	Acceptable Answer		Additional Guidance	Mark
7(a)(i)	- ticks under titration numbers 2, 3, 4 - $17.65\left(\mathrm{~cm}^{3}\right)$	(1) (1)	ignore \mathbf{X} under Titration 1 example of calculation $\frac{17.60+17.70+17.65}{3}=17.65$ scroll down as mean titre value may be written below (i) rather than in the table units not required must be 2 dp TE from M1 if Titration 1 has been ticked (17.74)	(2)
Question Number	Acceptable Answer		Additional Guidance	Mark
7(a)(ii)	- Phenolphthalein/ methyl orange - colourless to pink / red to orange	(1)	M2 depends on M1 allow any indicator other than litmus or universal indicator allow minor errors in spelling of phenolphthalein but not phenyl.... do not award red/pink-red for phenolphthalein nor yellow for methyl orange allow correct colour change for other indicators	(2)

Question Number	Acceptable Answer	Additional Guidance	Mark
7(a)(iii)	- converts [acid] from $\mathrm{g} \mathrm{dm}^{-3}$ to $\mathrm{mol} \mathrm{dm}^{-3}$ - calculates moles of acid in $25 \mathrm{~cm}^{3}$ - calculates moles of sodium hydroxide in titre cm^{3} - converts moles of sodium hydroxide in titre to $\mathrm{mol} \mathrm{dm}^{-3}$ and gives the answer 3 SF	Example of calculation $\begin{align*} & 3.80 / 90.0=* 4.22 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1}\\ & \text { ans to } \mathrm{M} 1 \times 25 \times 10^{-3} \tag{1}\\ & 25 \times 10^{-3} \times * 4.22 \times 10^{-2}=* * 1.0556 \times 10^{-3} \\ & (\mathrm{~mol}) \\ & \text { allow } \mathrm{M} 1 \text { and } \mathrm{M} 2 \text { in any order } \\ & \text { one mark only if not divided by } 90.0 \\ & \text { ans to } \mathrm{M} 2 * * \times 2 \\ & =1.0556 \times 10^{-3} \times 2=* * * 2.111 \times 10^{-3}(\mathrm{~mol}) \\ & =\text { ans to } \mathrm{M}^{* * * *} \times 1000 / 17.65=0.1196 \\ & =0.120\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{align*}$ correct answer with no working scores 4 marks	(4)

Question Number	Acceptable Answer	Additional Guidance	Mark
7(b)(i)	- burette uncertainty - pipette uncertainty	Example of calculations $\begin{aligned} & 0.05 \times 2 \times 100 / 17.65=(\pm) 0.567 / 0.57 / 0.6(\%) \\ & 0.06 \times 100 / 25=(\pm) 0.24 / 0.2(\%) \end{aligned}$ ignore addition of the two uncertainties ignore SF	(2)

Question Number	Acceptable Answer	Mark
$\mathbf{7 (b) (i i)}$	The only correct answer is B	
	\mathbf{A} is not correct because the volume of NaOH needed is divided by 4, uncertainty is $\times 4$	
	\mathbf{C} is not correct because moles of acid is the same and uncertainty is the same.	
	D is not correct because moles of acid halved and uncertainty doubled.	

Question Number	Acceptable Answer	Additional Guidance	Mark
8(a)		display all three methyl groups allow -OH do not award C-H-O	

Question Number	Acceptable Answer	Additional Guidance	Mark
$\mathbf{8 (b) (i)}$	An answer that makes reference to one of the following: molecular ion/molecule fragments/is unstable		

Question Number	Acceptable Answer	Additional Guidance	Mark
8(b)(ii)		allow + charge on any part of the ion/outside the structure but + must be shown allow displayed/structural/skeletal/ molecular formulae or any combination of these.	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
8(c)(i)	- calculation for bonds broken in the alcohol (*) (1) - calculation for bonds broken in oxygen and total energy for bonds broken(**) - calculation for bonds made(***) - calculation of $\Delta_{\mathrm{c}} \mathrm{H}$ (2-methylpropan-2-ol) with sign	Example of calculation $\begin{aligned} & 3(\mathrm{C}-\mathrm{C})+9(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{O})+(\mathrm{O}-\mathrm{H}) \\ & =(3 \times 347)+(9 \times 413)+358+464=(+) 5580 \\ & (\mathrm{~kJ} \mathrm{~mol} \\ & -1) \\ & 6(\mathrm{O}=\mathrm{O})=(6 \times 498)=(+) 2988\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ $\begin{equation*} \text { total }=+5580+2988=(+) 8568\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ TE from ans * M1 + 2988 $\begin{align*} & =8(\mathrm{C}=\mathrm{O})+10(\mathrm{O}-\mathrm{H}) \tag{1}\\ & =(8 \times 805)+(10 \times 464)=-11080\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{align*}$ $=+8568-11080=-2512\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ allow TE for answer(**) + answer(***) units not required but if given they must be correct correct final answer with no working scores 4	

Question Number	Acceptable Answer	Additional Guidance	Mark
8(c)(ii)	An explanation that makes reference to the following points: - incomplete combustion - $\Delta_{\mathrm{C}} \mathrm{H}$ (2-methylpropan-2-ol) will be less negative /less exothermic than data book value	mark independently do not award just lower/smaller/decreases/ more positive allow reduce the magnitude (of the value)	(2)

Question Number	Acceptable Answer	Additional Guidance	Mark
$\mathbf{8 (c) (\text { iii) }}$	An answer that makes reference to the following points: $\Delta_{\text {H }}$ figures are at 298 K /data book bond energies refer to gaseous state and water and/or 2-methylpropan- 2-ol are/is (both) liquid(s) (at 298 K)	allow just liquid involved do not award data book bond energies are mean (values)/not specific to 2-methylpropan-2-ol	(1)

Question Number	Acceptable Answer	Mark
$\mathbf{8 (d)}$	The only correct answer is D	
	A is not correct because tertiary alcohol is not oxidised	
	B is not correct because this is incorrect colour change for acidified dichromate	
\mathbf{C} is not correct because this is incorrect colour change for these reagents	(1)	

(Total for Question 8 = 11 marks)

