

## GCE

# **Chemistry A**

Unit H432/01: Periodic table, elements and physical chemistry

Advanced GCE

## Mark Scheme for June 2018

PMT

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2018

## Annotations

| Annotation   | Meaning                                                    |
|--------------|------------------------------------------------------------|
| DO NOT ALLOW | Answers which are not worthy of credit                     |
| ALLOW        | Answers that can be accepted                               |
| ()           | Words which are not essential to gain credit               |
|              | Underlined words must be present in answer to score a mark |
| AW           | Alternative wording                                        |
| ORA          | Or reverse argument                                        |
| ×            | Correct response                                           |
| ×            | Incorrect response                                         |
| <b>^</b>     | Omission mark                                              |
| BOD          | Benefit of doubt given                                     |
| CON          | Contradiction                                              |
| RE           | Rounding error                                             |

| June | 2018 |  |
|------|------|--|
|------|------|--|

| SF   | Error in number of significant figures |
|------|----------------------------------------|
| ECF  | Error carried forward                  |
| L1   | Level 1                                |
| L2   | Level 2                                |
| L3   | Level 3                                |
| NBOD | Benefit of doubt not given             |
| SEEN | Noted but no credit given              |
| I    | Ignore                                 |

June 2018

#### Subject-specific Marking Instructions

#### INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

#### **SECTION A**

| Question | Answer | Marks | AO<br>element | Guidance |
|----------|--------|-------|---------------|----------|
| 1        | C      | 1     | AO2.2         |          |
| 2        | C      | 1     | AO2.2         |          |
| 3        | В      | 1     | AO2.2         |          |
| 4        | D      | 1     | AO2.4         |          |
| 5        | Α      | 1     | AO1.2         |          |
| 6        | C      | 1     | AO1.2         |          |
| 7        | D      | 1     | AO2.3         |          |
| 8        | Α      | 1     | AO1.1         |          |
| 9        | В      | 1     | AO1.2         |          |
| 10       | C      | 1     | AO2.6         |          |
| 11       | Α      | 1     | AO1.2         |          |
| 12       | D      | 1     | AO2.5         |          |
| 13       | В      | 1     | AO1.1         |          |
| 14       | C      | 1     | AO1.1         |          |
| 15       | D      | 1     | AO1.1         |          |
|          | Total  | 15    |               |          |

PMT

## SECTION B

| Q  | uestio | n    | Answer                                                                                                                                                                                                                                  | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                |
|----|--------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16 | (a)    | (i)  | <ul> <li>(enthalpy change when)</li> <li>1 mole of gaseous ions react</li> <li>OR 1 mole of hydrated/aqueous ions are formed ✓</li> <li>gaseous ions dissolve in water</li> <li>OR gaseous ions form aqueous/hydrated ions ✓</li> </ul> | 2     | IGNORE 'energy released' OR 'energy required'                                                                                                                                                                                                                                                                                                                                           |
|    | (a)    | (ii) | $Ca^{2+}(g) + 2F^{-}(g)$ $Ca^{2+}(aq) + 2F^{-}(g)$ $Ca^{2+}(aq) + 2F^{-}(aq) \checkmark$ $CaF_{2}(s)$                                                                                                                                   | 4     | Correct species <b>AND</b> state symbols required for each mark. (mark independently)<br>On 2nd line, <b>ALLOW</b> $Ca^{2+}(g) + 2F^{-}(aq)$<br>(i.e. F <sup>-</sup> hydrated before $Ca^{2+}$ )<br>On 3rd line, <b>ALLOW</b> $CaF_2(aq)$<br><b>DO NOT ALLOW</b> when first seen but <b>ALLOW ECF</b> for ' 2' missing and for use of the following ions $Fl^{-}F_2^{-}$<br>$Ca^{+/3+}$ |

PMT

| Question | า     | Answer                                                                                                                                                                                                                                                                                                                                                                      | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)      | (iii) | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF answer = -504 (kJ mol <sup>-1</sup> ) award 2 marks<br>IF answer = -1008 (kJ mol <sup>-1</sup> ) award 1 mark<br>$2 \times \Delta_{hyd} H(F^{-})$<br>= [-2630 + 13] - (-1609)<br>OR -2617 + 1609<br>OR -1008 (kJ mol <sup>-1</sup> ) $\checkmark$<br>$\Delta_{hyd} H(F^{-}) = \frac{-1008}{2} = -504 \checkmark (kJ mol^{-1})$ | 2     | IF alternative answer, check to see if there is any ECF<br>credit possible using working below.<br>'-' sign is needed.<br>COMMON ERRORS for 1 mark:<br>(+)2694: signs all reversed<br>-2113: sign wrong for -1609<br>-2126: sign wrong for 2630<br>-517: sign wrong for 13<br>+504: sign wrong<br>IF ALL 3 relevant values from the information at the<br>start of Q16a(iii) have NOT been used, award zero<br>marks unless one number has a transcription error,<br>where 1 mark can be awarded ECE                  |
| (a)      | (iv)  | Correct comparison of $\Delta_{hyd}$ linked to sizes<br>$\Delta_{hyd}H(F^-)$ more negative/exothermic (than $\Delta_{hyd}H(CT)$ )<br>AND<br>$F^-$ has smaller size (than $CI^-) \checkmark$<br>Comparison of attraction between ions and water<br>$F^-$ OR smaller sized ion linked to greater attraction to<br>$H_2O \checkmark$                                           | 2     | ORA<br>IGNORE 'atomic' before radius when comparing size of<br>ions<br>IGNORE charge density<br>IGNORE charge density<br>IGNORE electronegativity<br>IGNORE nuclear attraction<br>DO NOT ALLOW 'forms stronger hydrogen bonds with<br>water' OR 'forms stronger van der Waals' forces with<br>water'<br>ALLOW 'forms bonds' for attraction'<br>DO NOT ALLOW F <sup>-</sup> greater attraction to H <sub>2</sub> O if given as<br>larger ion<br>Assume 'F' / 'Fluorine' means 'ions' but DO NOT ALLOW<br>'F molecules' |

| June | 2018 |  |
|------|------|--|
|------|------|--|

| Question |     | n    | Answer                                                                                 | Marks | Guidance                                                                                                                             |
|----------|-----|------|----------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------|
|          | (b) | (i)  | Average bond enthalpy                                                                  | 2     |                                                                                                                                      |
|          |     |      | Breaking of one mole of bonds ✓                                                        |       | IGNORE energy required OR energy released IGNORE<br>heterolytic / homolytic<br>DO NOT ALLOW bonds formed<br>DO NOT ALLOW ionic bonds |
|          |     |      | In gaseous molecules ✓                                                                 |       | IGNORE species for molecules                                                                                                         |
|          | (b) | (ii) | FIRST, CHECK ANSWER ON ANSWER LINE                                                     | 3     | ANNOTATE ANSWER WITH TICKS AND CROSSES                                                                                               |
|          |     |      | IF answer = (+) 158 award 3 marks<br>                                                  |       | IGNORE sign                                                                                                                          |
|          |     |      |                                                                                        |       | IGNORE sign                                                                                                                          |
|          |     |      | Bond enthalpy of F–F                                                                   |       |                                                                                                                                      |
|          |     |      | $(\Delta H \text{ for } (O-H) \text{ bonds broken } =)$                                |       | ALLOW ECF                                                                                                                            |
|          |     |      |                                                                                        |       | Common errors                                                                                                                        |
|          |     |      | $(\Delta H \text{ for bonds made } =) 2770 (kJ mol^{-1})$                              |       |                                                                                                                                      |
|          |     |      | OR 498 AND 2272 (KJ mol <sup>-1</sup> )<br>OR 409 AND 4 $-500$ (kJ mol <sup>-1</sup> ) |       | Award 2 marks for;                                                                                                                   |
|          |     |      | <b>OR</b> 498 <b>AND</b> 4 $\times$ 508 (KJ mol ) $\checkmark$                         |       | -158 (Wrong sign)<br>(+)316 (No ÷ 2)                                                                                                 |
|          |     |      | 2770 - 1856 - 598                                                                      |       | $(\pm)$ 510 (NO $\pm 2$ )<br>(+) 622 (use of 2 x 464)                                                                                |
|          |     |      | (bond enthalpy) $F-F = \frac{2776}{2}$                                                 |       | (+) 457 (omitting – 598)                                                                                                             |
|          |     |      | = (+)158 (kJ mol <sup>-1</sup> ) ✓                                                     |       | (+) 756 (use of +598)                                                                                                                |
|          |     |      |                                                                                        |       | Award 1 mark for;                                                                                                                    |
|          |     |      |                                                                                        |       | (+) 970 (use of 2 x 464 and +598)                                                                                                    |
|          |     |      | Total                                                                                  | 15    |                                                                                                                                      |

| <ul> <li>17 (a)*</li> <li>(a)*</li> <li>Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question.</li> <li>Level 3 (5-6 marks)</li> <li>A comprehensive conclusion which uses quantitative results for determination of the reaction orders.</li> <li>AND</li> <li>Determines k from correct rate equation.</li> <li>AND</li> <li>Proposes the two-step mechanism which adds up to overall equation with no intermediate electrons.</li> <li>There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. The working for the scientific content is clearly linked to the experimental evidence.</li> <li>Level 2 (3-4 marks)</li> <li>Reaches a sound, but not comprehensive, conclusion based on the quantitative results.</li> <li>AND</li> <li>Correctly identifies the orders and rate equation.</li> <li>AND</li> <li>Calculates the rate constant</li> <li>OR</li> <li>Proposes the two-step mechanism with reactants of first step matching rate equation or matches orders</li> <li>There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.</li> <li>There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.</li> <li>There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.</li> <li>There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. The working for the scientific content is clearly linked</li> <li>Fe<sup>3+</sup>(aq) + 2T(aq) → Fe<sup>2+</sup>(aq) + 1/2(aq) FAST</li> <li>Fe<sup>3+</sup>(aq) + 2T(aq) → Fe<sup>2+</sup> + 1/2 SLOW Fe<sup>3+</sup>(aq) + 1/2(aq) → Fe<sup>3+</sup> + 1/2 SLOW Fe<sup>3+</sup>(aq) + 2Fe<sup>2+</sup>(aq) + 1/2(aq) FAST</li> <li>Fe<sup>3+</sup>(aq) + 2F(aq) → Fe<sup>4+</sup> + 1/2 SLOW Fe<sup>3+</sup>(aq) + 2Fe<sup>2</sup></li></ul> | Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| to the experimental evidence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17 (a)*  | <ul> <li>Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question.</li> <li>Level 3 (5–6 marks)</li> <li>A comprehensive conclusion which uses quantitative results for determination of the reaction orders.</li> <li>AND</li> <li>Determines k from correct rate equation.</li> <li>AND</li> <li>Proposes the two-step mechanism which adds up to overall equation with no intermediate electrons.</li> <li>There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. The working for the scientific content is clearly linked to the experimental evidence.</li> <li>Level 2 (3–4 marks)</li> <li>Reaches a sound, but not comprehensive, conclusion based on the quantitative results.</li> <li>AND</li> <li>Calculates the rate constant</li> <li>OR</li> <li>Proposes the two-step mechanism with reactants of first step matching rate equation or matches orders</li> <li>There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. The working for the scientific content is clearly linked to the experimental evidence.</li> </ul> | 6     | Indicative scientific points may include:<br>Orders and rate equation<br>• Fe <sup>3+</sup> 1st order AND   <sup>-</sup> 2nd order<br>OR rate = k[Fe <sup>3+</sup> ] [I <sup>-</sup> ] <sup>2</sup><br>• Supported by experimental results<br>Calculation of k including units<br>• k correctly calculated AND correct units,<br>e.g.<br>k = $\frac{8.10 \times 10^{-4}}{(4.00 \times 10^{-2}) \times (3.00 \times 10^{-2})^2} = 22.5$<br>• dm <sup>6</sup> mol <sup>-2</sup> s <sup>-1</sup> OR mol <sup>-2</sup> dm <sup>6</sup> s <sup>-1</sup><br>Two-step mechanism<br>• Two steps add up to give overall equation<br>• Slow step/ rate-determining step matches<br>stoichiometry of rate equation.<br>• Each step balances by species and charge<br>e.g.<br>Fe <sup>3+</sup> (aq) + 2Γ(aq) → [Fel <sub>2</sub> ] <sup>+</sup> SLOW<br>Fe <sup>3+</sup> (aq) + [Fel <sub>2</sub> ] <sup>+</sup> → 2Fe <sup>2+</sup> (aq) + I <sub>2</sub> (aq) FAST<br>Fe <sup>3+</sup> (aq) + 12 <sup>-</sup> (aq) → Fe <sup>2+</sup> (aq) + I <sub>2</sub> (aq) FAST<br>Fe <sup>3+</sup> (aq) + 2Γ(aq) → Fe <sup>2+</sup> (aq) + I <sub>2</sub> (aq) FAST<br>Fe <sup>3+</sup> (aq) + 2Γ(aq) → Fe <sup>2+</sup> (aq) = I <sub>2</sub> (aq) FAST<br>Fe <sup>3+</sup> (aq) + 2Γ(aq) → Fe <sup>2+</sup> (aq) = I <sub>2</sub> (aq) FAST<br>Fe <sup>3+</sup> (aq) + 2Γ(aq) → Fe <sup>2+</sup> (aq) = I <sub>2</sub> (aq) FAST<br>Fe <sup>3+</sup> (aq) + 2Γ(aq) → Fe <sup>2+</sup> (aq) = I <sub>2</sub> (aq) FAST<br>Fe <sup>3+</sup> (aq) + 2Γ(aq) → Fe <sup>2+</sup> (aq) = I <sub>2</sub> (aq) FAST<br>Fe <sup>3+</sup> (aq) + 2Γ(aq) → Fe <sup>2+</sup> (aq) = I <sub>2</sub> (aq) FAST<br>Fe <sup>3+</sup> (aq) + 2Γ(aq) → Fe <sup>2+</sup> (aq) = FAST<br>There may be other feasible possibilities |

| Question | Answer                                                                                                                                                                                                            | Marks | Guidance |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
|          | Level 1 (1–2 marks)<br>Attempts to reach a simple conclusion for orders<br>AND<br>Attempts a relevant rate equation.                                                                                              |       |          |
|          | There is an attempt at a logical structure with a line of<br>reasoning. The information is in the most part relevant The<br>working for the scientific content is clearly linked to the<br>experimental evidence. |       |          |
|          | <b>0 marks</b><br>No response or no response worthy of credit.                                                                                                                                                    |       |          |
|          |                                                                                                                                                                                                                   |       |          |
|          |                                                                                                                                                                                                                   |       |          |
|          |                                                                                                                                                                                                                   |       |          |
|          |                                                                                                                                                                                                                   |       |          |
|          |                                                                                                                                                                                                                   |       |          |
|          |                                                                                                                                                                                                                   |       |          |
|          |                                                                                                                                                                                                                   |       |          |
|          |                                                                                                                                                                                                                   |       |          |

| Question | Answer                                                                                                                                                       | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) (i)  | $\mathbf{F}_{a} \text{ calculation}$ $\mathbf{F}_{a} \text{ to 3 SF AND use of 10^{-3} for gradient \checkmark e.g. from ±820, E_{a} = (+)6820 (J mol^{-1})$ | 3     | ALLOW lines which do not intercept y-axis<br>ALLOW mark for gradient if correct working shown<br>within $E_a$ calculation without gradient being calculated<br>separately<br>ALLOW $\pm 0.8(00) \rightarrow \pm 1.04(0)$<br>( <i>omission of 10<sup>-3</sup></i> )<br>ALLOW ECF for calculated gradient x 8.314<br>If value of gradient not shown separately,<br>ALLOW $E_a$ in range: $6650 \rightarrow 8650$<br>OR $6.65 \rightarrow 8.65$ ( <i>omission of 10<sup>-3</sup></i> )<br>This mark subsumes gradient mark<br>NOTE: Omission of 10 <sup>-3</sup> can get 1st 2 marks |

| Question | Answer                                                                                                                                                                                                                                                                            | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Intercept shown on graph<br>could be by extrapolation of line, or label on y axis<br>AND In A linked to intercept value<br>e.g. In A = 31.4 $\checkmark$<br>Calculation of A = e <sup>intercept</sup> $\checkmark$<br>e.g. A = e <sup>31.4</sup> = 4.33 $\times$ 10 <sup>13</sup> | 2     | ALLOW $y = 31.4$<br>ALLOW substitution of correct values of ln k and 1/T<br>into ln k = $-E_a/R \times 1/T + ln$ A to give a value of ln A<br>which approximately matches the intercept if given<br>$ln A = ln k + (E_a/R \times 1/T)$<br>Calculation of $A = e^{lnA}$<br>OR<br>$e^{ln k + (E_{a/R} \times 1/T)}$<br>ALLOW ECF from incorrect ln A<br>$e^{31.2} = 3.55 \times 10^{13}$<br>$e^{31.3} = 3.92 \times 10^{13}$<br>$e^{31.45} = 4.12 \times 10^{13}$<br>$e^{31.5} = 4.12 \times 10^{13}$<br>$e^{31.5} = 4.79 \times 10^{13}$<br>$e^{31.6} = 5.29 \times 10^{13}$<br>$e^{31.7} = 5.85 \times 10^{13}$<br>$e^{31.8} = 6.46 \times 10^{13}$<br>$e^{32.0} = 7.9(0) \times 10^{13}$<br>$e^{32.1} = 8.73 \times 10^{13}$<br>IF 2 DP answer given, check rounding from calculator<br>value, not 3 DP values given<br>Eg $e^{31.7} = 5.8497 \times 10^{13}$ and $= 5.8 \times 10^{13}(2SF)$ |
|          | Total                                                                                                                                                                                                                                                                             | 11    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Question |     | n Answer                                                                                                                                                                            | Marks | Guidance                                                                                                                                                                                                                              |
|----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18       | (a) | $\mathcal{K}_{\rm c} = \frac{[\rm NO_2]^2}{[\rm NO]^2 [\rm O_2]} \checkmark$                                                                                                        | 2     | Must be square brackets<br>IGNORE state symbols                                                                                                                                                                                       |
|          |     | Units = dm <sup>3</sup> mol <sup>-1</sup> $\checkmark$                                                                                                                              |       | <b>ALLOW</b> mol <sup>-1</sup> dm <sup>3</sup><br><b>ALLOW</b> mol dm <sup>-3</sup> as ECF from inverted $K_c$ expression                                                                                                             |
|          | (b) | FIRST CHECK THE ANSWER ON THE ANSWER<br>LINE IF answer = 1.2 (mol) award 4 marks<br>Unless otherwise stated, marks are for correctly<br>calculated values. Working shows how values | 4     | ANNOTATIONS MUST BE USED<br>For all parts, ALLOW numerical answers from 2 significant<br>figures up to the calculator value<br>Ignore rounding errors after second significant figure                                                 |
|          |     | have been derived.<br>[NO] = $\frac{0.40}{4.0}$ = 0.1(0) (mol dm <sup>-3</sup> )                                                                                                    |       | 1st mark is for realising that concentrations need to be calculated.                                                                                                                                                                  |
|          |     | AND                                                                                                                                                                                 |       | ALLOW ECF                                                                                                                                                                                                                             |
|          |     | $[O_2] = \frac{0.80}{4.0} = 0.2(0) \text{ (mol dm}^{-3}) \checkmark$                                                                                                                |       | Correct numerical answer with no working would score all previous calculation marks                                                                                                                                                   |
|          |     | $[NO_2]^2 = 45 \times 0.10^2 \times 0.20 \text{ OR} = 0.09(0) \checkmark$                                                                                                           |       |                                                                                                                                                                                                                                       |
|          |     | $[NO_2] = \sqrt{(45 \times 0.10^2 \times 0.20)} \text{ OR} = 0.3(0) \text{ (mol dm}^{-3}) \checkmark$                                                                               |       | Making point 2 subsumes point 1                                                                                                                                                                                                       |
|          |     | amount NO <sub>2</sub> = $0.30 \times 4 = 1.2$ (mol) $\checkmark$                                                                                                                   |       | Making point 3 subsumes points 2 and 1                                                                                                                                                                                                |
|          |     |                                                                                                                                                                                     |       | Common errors<br>9.6 = 3 marks mol of NO and O <sub>2</sub> used<br>$0.36 = 3$ marks mol of NO <sub>2</sub> calculated from $[NO_2]^2$<br>2.4 = 2 marks mol of NO and O <sub>2</sub> used and no mol of NO <sub>2</sub><br>calculated |
|          |     |                                                                                                                                                                                     |       |                                                                                                                                                                                                                                       |

| Question | Answer                                                                                                                                                                                                        | Marks | Guidance                                                                                                                       |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------|
| (c) (i   | ) Exothermic<br>AND<br>K <sub>p</sub> decreases as temperature increases ✓                                                                                                                                    | 1     | ALLOW $K_c$ for $K_p$<br>ALLOW Equilibrium shifts to left hand side as temperature increases                                   |
| (c) (ii  | i)<br><i>Equilibrium shift</i><br>(Equilibrium position) shifts to right / forward /<br>towards products ✓                                                                                                    | 3     | <b>FULL ANNOTATIONS NEEDED</b><br><b>ALLOW</b> $K_c$ for $K_p$ throughout the response.                                        |
|          | Effect of increased pressure on K <sub>p</sub> expression<br>Ratio (in K <sub>p</sub> expression) decreases<br>OR<br>Denominator/bottom of K <sub>p</sub> expression increases<br>more (than numerator/top) ✓ |       | <b>ALLOW</b> $K_p$ (initially) decreases for second marking point <b>IF</b> $K_p$ is seen to be restored later in the process. |
|          | Equilibrium shift ( $K_p$ expression)Ratio (in $K_p$ expression) increases to restore $K_p$ ORNumerator/top of $K_p$ expression increases torestore $K_p \checkmark$                                          |       | <b>ALLOW</b> more NO <sub>2</sub> / product formed to restore $K_p$<br><b>ALLOW</b> ratio adjusts to restore $K_p$             |
|          | Total                                                                                                                                                                                                         | 10    |                                                                                                                                |

| C  | Questi | on   | Answer                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks | Guidance                                                                                                                                                                                                                                                                                                                          |
|----|--------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19 | (a)    | (i)  | $K_{a} = \frac{[H^{+}] [CH_{3}COO^{-}]}{[CH_{3}COOH]} \checkmark$                                                                                                                                                                                                                                                                                                                                                                   | 1     | IGNORE state symbols<br>Must be square brackets<br>IGNORE expressions with HA or with [H <sup>+</sup> ] <sup>2</sup>                                                                                                                                                                                                              |
|    |        | (ii) | FIRST, CHECK ANSWER ON ANSWER LINE<br>IF answer = 4.76 award 3 marks<br>[H <sup>+</sup> ] = 10 <sup>-pH</sup><br>= 10 <sup>-2.41</sup> = 3.89 × 10 <sup>-3</sup> (mol dm <sup>-3</sup> ) $\checkmark$<br>$K_a$<br>= $\frac{[H^+]^2}{[CH_3COOH]} = \frac{(3.89 \times 10^{-3})^2}{0.870}$<br>= 1.74 × 10 <sup>-5</sup> (mol dm <sup>-3</sup> ) $\checkmark$<br>$pK_a$<br>= $-\log K_a = -\log 1.74 \times 10^{-5} = 4.76 \checkmark$ | 3     | ALLOW use of HA and A <sup>-</sup><br>ALLOW 3 SF up to calculator value of:<br>$3.89045145 \times 10^{-3}$ correctly rounded<br>$K_a$ 1.739725573 $\times 10^{-3}$<br>NOTE: $1.74 \times 10^{-5}$ is same from unrounded [H <sup>+</sup> ] calculator<br>value and 3 SF [H <sup>+</sup> ] value<br>2 DP required<br>3 SE required |
|    |        |      | % dissociation = $\frac{ \Pi }{[CH_3COOH]} \times 100$<br>= $\frac{3.89 \times 10^{-3}}{0.870} \times 100 = 0.447(\%)$ $\checkmark$                                                                                                                                                                                                                                                                                                 |       |                                                                                                                                                                                                                                                                                                                                   |

| Question | Answer                                                                                                                                        | Marks | Guidance                                                                                                                                                        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b)      | FIRST, CHECK ANSWER ON ANSWER LINE<br>IF answer = 95.9(%) award 4 marks                                                                       | 4     | ALLOW ECF throughout                                                                                                                                            |
|          | $[H^{+}] = 10^{-pH}$<br>= 10 <sup>-13.48</sup> = 3.31 × 10 <sup>-14</sup> (mol dm <sup>-3</sup> ) ✓                                           |       | <b>IGNORE</b> rounding errors beyond 3 <sup>rd</sup> SF throughout                                                                                              |
|          |                                                                                                                                               |       | <b>ALLOW</b> $3.3 \times 10^{-14} \text{ (mol dm}^{-3}\text{)}$                                                                                                 |
|          | <b>[OH<sup>-</sup>] from K</b> <sub>w</sub><br>= $\frac{1.00 \times 10^{-14}}{3.31 \times 10^{-14}} = 0.302 \text{ (mol dm}^{-3}) \checkmark$ |       | ALLOW 0.30 ALLOW 0.303 if $3.3 \times 10^{-14}$ used in the first marking point                                                                                 |
|          |                                                                                                                                               |       | ALLOW pOH method:,<br>pOH = 14 – 13.48 = 0.52                                                                                                                   |
|          |                                                                                                                                               |       | [OH <sup>-</sup> ] = 10 <sup>-0.52</sup> = 0.302 (mol dm <sup>-3</sup> )                                                                                        |
|          | <i>Mass of</i> (NaOH)<br>= 0.302 × $\frac{100}{1000}$ × 40.0 = 1.21 (g) ✓                                                                     |       | <b>ALLOW</b> [OH <sup>-</sup> ] × 0.1 × 40                                                                                                                      |
|          | % of NaOH to 3 SF<br>= $\frac{1.21}{1.26}$ × 100 = 95.9 (%) ✓                                                                                 |       | Rounding [OH <sup>-</sup> ] to 0.3(0) gives 1.2/1.26 = 95.2%<br>Award 4 marks<br>Rounding [OH <sup>-</sup> ] to 0.303 gives 1.212/1.26 = 96.2%<br>Award 4 marks |

## Mark Scheme

| Question | Answer                                                                                                                                                                                                       | Marks | Guidance                                                                                                                                         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| (c)      |                                                                                                                                                                                                              | 2     | <ul> <li>NOT REQUIRED</li> <li>Charge ('2-') IGNORE incorrect charges</li> <li>Brackets</li> <li>Circles</li> <li>IGNORE inner shells</li> </ul> |
|          | Global rules                                                                                                                                                                                                 |       | ALLOW rotated diagram                                                                                                                            |
|          | <ul> <li>C and O electrons must be shown differently,<br/>e.g. • for C and × for O</li> <li>Na electrons shown with different symbol</li> </ul>                                                              |       | <b>ALLOW</b> diagram with missing C or O symbols.                                                                                                |
|          | <ul> <li>MARKING</li> <li>Bonding around central C atom ✓</li> <li>4 electrons for C shown as • OR ×</li> <li>4 electrons for O, different from C as • OR ×</li> </ul>                                       |       |                                                                                                                                                  |
|          | <ul> <li>C=O bond with 2 C electrons AND 2 O electrons</li> <li>Two C–O bonds with 1 C electron AND 1 O</li> </ul>                                                                                           |       | In C=O bond, ALLOW sequence ×ו•                                                                                                                  |
|          | electron                                                                                                                                                                                                     |       | In <b>C–O bond</b> , <b>ALLOW</b> 'extra' electron with different symbol for O electron                                                          |
|          | <ul> <li>Non-bonded (nb) electrons around 3 O atoms ✓</li> <li>C=O oxygen has 4 nb 'O' electrons</li> <li>Each C–O oxygen has 5 nb 'O' electrons<br/>AND 1 'extra' electron with different symbol</li> </ul> |       | ALLOW non-bonding electrons unpaired<br>ALLOW 'extra' electron as • OR × if it has been labelled<br>'extra electron' or similar                  |
|          | Total                                                                                                                                                                                                        | 11    |                                                                                                                                                  |

| Q       | uesti        | on | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks      | Guidance                                      |
|---------|--------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------|
| Q<br>20 | uesti<br>(a) | on | Asswer         ASSUME trend is down the group<br>(unless stated otherwise)         Forces         London forces increase         OR induced dipole(-dipole) interactions increase ✓         Reason         (Number of) electrons increases ✓         Link to energy and particles         More energy to break intermolecular forces         OR         to break London forces         OR         to break induced dipole(-dipole) interactions ✓ | Marks<br>3 | Guidance<br>FULL ANNOTATIONS MUST BE USED<br> |
|         |              |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                                               |

| Question | Answer                                                      | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|-------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b)      | $E_a$ : without catalyst                                    | 3     | FULL ANNOTATIONS MUST BE USED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | $E_{c}: with catalyst                                     $ |       | <ul> <li>Mark each point independently</li> <li>IGNORE state symbols.</li> <li>Δ<i>H</i>: DO NOT ALLOW –Δ<i>H</i>.<br/>ALLOW Δ<i>H</i> arrow even with a gap at the top and bottom, i.e. does not quite reach reactant or product line</li> <li><i>E</i><sub>a</sub>: ALLOW no arrowhead or arrowheads at both ends of <i>E</i><sub>a</sub> line <i>E</i><sub>a</sub> line must reach (near or not too far beyond) maximums regardless of position</li> <li>ALLOW AE or EA for <i>E</i><sub>a</sub></li> <li>Exothermic diagram can access the first and third marks</li> </ul> |

| Q | uestion | Answer                                                                                                                                                                               | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                       |
|---|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (C)     | FIRST CHECK THE ANSWER ON THE ANSWER LINE<br>IF $M = 183$ AND Formula = Cl <sub>2</sub> O <sub>7</sub> award 4 marks<br>IF $M = 183$ award 3 marks                                   | 4     | If there is an alternative answer, check to see if there is any ECF credit possible using working below                                                                                                                                                                                                                                                                                        |
|   |         | Use of data and unit conversions<br>• (R = 8.314)<br>• T in K: 373K<br>• V in m <sup>3</sup> : 76.0 × 10 <sup>-6</sup><br>• (p in Pa: 1.00 × 10 <sup>5</sup> ) ✓<br>Calculation of n |       |                                                                                                                                                                                                                                                                                                                                                                                                |
|   |         | $n = \frac{(1.00 \times 10^5) \times (76.0 \times 10^{-6})}{8.314 \times 373}$ $n = 2.45 \times 10^{-3} \text{ (mol) } \checkmark$                                                   |       | Correct value of n subsumes first mark                                                                                                                                                                                                                                                                                                                                                         |
|   |         | Molar mass<br>$M = \frac{m}{n} = \frac{0.4485}{2.45 \times 10^{-3}} = 183 \text{ (g mol^{-1})} \checkmark$                                                                           |       | ALLOW ECF from incorrectly calculated n                                                                                                                                                                                                                                                                                                                                                        |
|   |         | Molecular formula                                                                                                                                                                    |       | <b>ALLOW ECF</b> from incorrect M if formula of $Cl_xO_y$ is the <b>closest</b> to the with <b>calculated</b> value of M                                                                                                                                                                                                                                                                       |
|   |         | Cl₂O7 ✓                                                                                                                                                                              |       | <b>IGNORE</b> use of 24 000 cm <sup>3</sup> for calculation of n<br><b>BUT</b> then Mark molar mass and Molecular formula by<br><b>ECF</b> for two marks maximum.<br>$n = \frac{76.0}{24000} = 3.17 \times 10^{-3} \text{ (mol)}$<br>$M = \frac{0.4485}{3.17 \times 10^{-3}} = 141.6/141.5 \text{ (g mol}^{-1}) \checkmark$<br>Molecular formula = Cl <sub>3</sub> O <sub>2</sub> $\checkmark$ |

June 2018

Guidance Question Answer Marks Titres correct and ALL recorded to 2 decimal places (d) (i) 2 Titre: 24.00 23.75 23.85 🗸 23.40 mean titre =  $23.80 \text{ (cm}^3) \checkmark$ **ALLOW** 23.8 cm<sup>3</sup> Percentage uncertainty =  $\frac{0.05 \times 2}{23.40} \times 100 = 0.43 (\%) \checkmark$ ALLOW ECF from incorrect subtraction in (i) or incorrect (d) (ii) 1 mean ALLOW 0.42% from titre values 2, 3 or 4 or mean titre or trial titre. 2 DP required Add starch (near the end point) ✓ (iii) 2 (d) ALLOW blue/black OR black OR purple for colour of Blue to colourless  $\checkmark$ mixture ALLOW blue colour disappears (to colourless) **IGNORE** 'clear' **IGNORE** 'colorimetry'

| Q | uesti | on   | Answer                                                                                                                                                                                | Marks | Guidance                                                                                                                                                                                                                                                                                                                                       |
|---|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (d)   | (iv) | FIRST CHECK THE ANSWER ON THE ANSWER LINE<br>IF B = RbIO <sub>3</sub> AND relative formula mass = 260.5 award 5<br>marks<br>IF relative formula mass = 260.5 award 4 marks            | 5     |                                                                                                                                                                                                                                                                                                                                                |
|   |       |      | $n(S_2O_3^{2^-}) \text{ in titration} = \frac{0.150 \times 23.80}{1000} = 3.57 \times 10^{-3} \text{ (mol) } \checkmark$                                                              |       | ALLOW ECF from incorrect mean titre in (a)(i)                                                                                                                                                                                                                                                                                                  |
|   |       |      | <i>n</i> (IO <sub>3</sub> <sup>-</sup> ) in titration<br>= $\frac{3.57 \times 10^{-3}}{6}$ = 5.95 × 10 <sup>-4</sup> (mol) ✓                                                          |       | <b>ECF</b> from $n(S_2O_3^{2-})$ in titration<br><b>ALLOW</b> a two-step calculation<br>$n(I_2) = n(S_2O_3^{2-}) \div 2$ and $n(IO_3^{-}) = n(I_2) \div 3$                                                                                                                                                                                     |
|   |       |      | <i>n</i> (IO₃ <sup>-</sup> ) in original 250 cm <sup>3</sup><br>= 10 × 5.95 × 10 <sup>-4</sup> = 5.95 × 10 <sup>-3</sup> (mol) ✓                                                      |       | <b>ECF</b> from $n(IO_3^-)$ in titration                                                                                                                                                                                                                                                                                                       |
|   |       |      | Relative formula mass of B<br>= $\frac{1.55}{5.95 \times 10^{-3}}$ = 260.5 (g mol <sup>-1</sup> ) ✓                                                                                   |       | <b>ECF</b> from $n(IO_3^-)$ in original 250 cm <sup>3</sup><br><b>IF</b> scaling × 10 is omitted,<br><b>ALLOW ECF</b> from $n(IO_3^-)$ in titration                                                                                                                                                                                            |
|   |       |      | Formula of B (must be derived from relative formula mass)<br>lodate of Group 1 metal that most closely matches calculated molar mass of B<br>Formula from 260.5 = RbIO <sub>3</sub> ✓ |       | ALLOW ECF from incorrect RFM of <b>B</b> provided metal is<br>from Group 1<br>ALLOW RbIO <sub>3</sub> <sup>-</sup><br>DO NOT ALLOW RbIO <sub>3</sub> without relative formula mass<br>value.<br>DO NOT ALLOW 260.4 (without working) and RbIO <sub>3</sub><br>IF <b>B</b> = RbIO <sub>3</sub> AND relative formula mass = 261 award 5<br>marks |
|   |       |      | Total                                                                                                                                                                                 | 20    |                                                                                                                                                                                                                                                                                                                                                |

| Q  | uestio | on   | Answer                                                                                                                                                                                                                                                                                           | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----|--------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21 | (a)    | (i)  | Ni: 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>8</sup> 4s <sup>2</sup> ✓<br>Ni <sup>2+</sup> : 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>8</sup> ✓                                                    | 2     | ALLOW 4s before 3d, ie $1s^22s^22p^63s^23p^64s^23d^8$<br>ALLOW $1s^2$ written after answer prompt ( <i>ie</i> $1s^2$ twice)<br>ALLOW upper case D, etc and subscripts, e.g $4S_23D_8$<br>ALLOW for Ni <sup>2+</sup> $4s^0$<br>DO NOT ALLOW [Ar] as shorthand for $1s^22s^22p^63s^23p^6$<br>Look carefully at $1s^22s^22p^63s^23p^6$ – there may be a mistake                                                                                                                                                                                 |
|    |        |      | Circuit:complete circuit AND voltmeter AND salt<br>bridge linking two half-cells $\checkmark$ Half cells:Pt AND I <sup>-</sup> AND I <sub>2</sub> $\checkmark$<br>Ni AND Ni <sup>2+</sup> $\checkmark$ Standard conditions:<br>1 mol dm <sup>-3</sup> solutions<br>AND 298 K / 25°C $\checkmark$ | -     | Voltmeter must be shown AND salt bridge must be<br>labelled<br>ALLOW small gaps in circuit<br>ALLOW half cells drawn either way around<br>IGNORE 2 before I <sup>-</sup> (aq)<br>DO NOT ALLOW I <sub>2</sub> (g) OR I <sub>2</sub> (s) OR I <sub>2</sub> (l)<br>ALL conditions required<br>BUT ALLOW 1 mol dm <sup>-3</sup> /1M if omitted here but shown for<br>just one solution in diagram<br>Look on diagram in addition to answer lines<br>IGNORE pressure<br><i>Not relevant for this cell</i><br>DO NOT ALLOW 1 mol for concentration |
|    | (b)    | (ii) | E = 0.79 (V) ✓                                                                                                                                                                                                                                                                                   | 1     | IGNORE sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | (c)    | (i)  | $H_2O_2(aq) + 2H^*(aq) + 2Fe^{2+}(aq) \rightarrow 2Fe^{3+-}(aq) + 2H_2O(I) \checkmark$                                                                                                                                                                                                           | 1     | ALLOW multiples<br>IGNORE state symbols, even if wrong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

H032/01

| Question | Answer                                                                                                                                                                                                                                                                                 | Marks | Guidance                                                                                                                                                                            |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c) (ii) | Equations<br>$3Zn(s) + Cr_2O_7^{2^-}(aq) + 14H^*(aq)$<br>$\rightarrow 3Zn^{2^+}(aq) + 2Cr^{3^+}(aq) + 7H_2O(I)$<br>$\checkmark$<br>$Zn(s) + 2Cr^{3^+}(aq) \rightarrow Zn^{2^+}(aq) + 2Cr^{2^+}(aq) \checkmark$                                                                         | 4     | ALLOW multiples<br>IGNORE state symbols, even if wrong                                                                                                                              |
|          | Comparison of <i>E</i> values (seen once)<br><i>E</i> of Zn is more negative/less positive than <i>E</i> of<br>$Cr_2O_7^{2^-}$<br>OR<br><i>E</i> of Zn is more negative/less positive than <i>E</i> of $Cr^{3^+}$<br>$\checkmark$                                                      |       | ALLOW $E_{cell}$ is (+) 2.09V for Zn/Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> cell<br>OR<br>ALLOW $E_{cell}$ is (+) 0.34V for Zn/Cr <sup>3+</sup> cell<br>IGNORE 'lower/higher' |
|          | Equilibrium shift related to <i>E</i> values<br>More negative/less positive OR Zn system shifts left<br>OR<br>Less negative/more positive Cr <sub>2</sub> O <sub>7</sub> <sup>2−</sup> system shifts<br>right OR Less negative/more positive Cr <sup>3+</sup> system<br>shifts right ✓ |       | For 'shifts left':<br>ALLOW '(Zn) is oxidised' OR 'electrons are lost (from Zn)'<br>For 'shifts right',<br>ALLOW '(Cr) is reduced' OR 'electrons are gained'                        |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (d)      | <ul> <li>Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question.</li> <li>Level 3 (5–6 marks)</li> <li>All three reactions are covered in detail with C, D, E and F identified with clear explanations.</li> <li>There is a well-developed line of reasoning which is clear and logically structured with clear chemical communication and few omissions. The information presented is relevant and substantiated.</li> <li>Level 2 (3–4 marks)</li> <li>All three reactions are covered but explanations may be incomplete</li> <li>OR</li> <li>Two reactions are explained in detail.</li> <li>There is an attempt at a logical structure with a line of reasoning. The information is relevant e.g. formulae may contain missing brackets or numbers and supported by some evidence.</li> <li>Level 1 (1–2 marks)</li> <li>Make two simple explanations from any one reaction.</li> <li>OR</li> <li>Makes one simple explanation from each of two reactions</li> <li>There is an attempt at a logical structure with a line of reasoning. The information is relevant e.g. formulae may contain missing brackets or numbers and supported by some evidence.</li> <li>Level 1 (1–2 marks)</li> <li>Make two simple explanations from any one reaction.</li> <li>OR</li> <li>Makes one simple explanation from each of two reactions</li> <li>There is an attempt at a logical structure with a line of reasoning The information is in the most part relevant.</li> <li>O marks</li> <li>No response worthy of credit.</li> </ul> | 6     | Indicative scientific points may include:<br>REACTION 1 (CuSO <sub>4</sub> /NH <sub>3</sub> )<br>Product<br>C : [Cu(NH <sub>3</sub> ) <sub>4</sub> (H <sub>2</sub> O) <sub>2</sub> ] <sup>2+</sup><br>Equation<br>[Cu(H <sub>2</sub> O) <sub>8</sub> ] <sup>2+</sup> + 4NH <sub>3</sub> $\rightarrow$ [Cu(NH <sub>3</sub> ) <sub>4</sub> (H <sub>2</sub> O) <sub>2</sub> ] <sup>2+</sup> + 4H <sub>2</sub> O<br>Structure of trans stereoisomer<br>$\begin{bmatrix} H_{2}O \\ H_{3}N_{H_{2}O} \\ H_{3}N_{H_{3}O} \\ H_{2}O \\ H_{3}N_{H_{2}O} \\ H_{3}N_{H_{3}O} \\ H_{2}O \\ H_{3}N_{H_{3}O} \\ H_{2}O \\ H_{3}N_{H_{3}O} \\ H_{3}N_{H_{2}O} \\ H_{3}N_{H_{3}O} \\ H_{3}N_{H_{2}O} \\ H_{3}N_{H_{3}O} \\ H_{3}N_{H_{3}O$ |

| E | D٨. | ЛТ |
|---|-----|----|
| Г | IV  | 11 |

### Mark Scheme

| Question | Answer | Marks | Guidance                                                                                                                                                                                                                                                              |
|----------|--------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |        |       | <ul> <li>Further guidance on use of wedges</li> <li>Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge':</li> <li>For bond into paper, ALLOW:</li> <li>************************************</li></ul> |
|          | Total  | 18    | •                                                                                                                                                                                                                                                                     |

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge

**OCR Customer Contact Centre** 

#### **Education and Learning**

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

**CB2 8EA** 

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 Cambridge

