GCE

Chemistry B (Salters)

H033/01: Foundations of chemistry

Advanced Subsidiary GCE

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2020

Annotations

Annotation	Meaning
A	Correct response
BOD	Incorrect response
CON	Omission mark
RE	Benefit of doubt given
SF	Contradiction
ECF	Rounding error
L1	Error in number of significant figures
L2	Error carried forward
L3	Level 1
NBOD	Level 2
SEEN	Level 3
I	Benefit of doubt not given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Section A

Question	Key	AO element
1	D	1.1
2	A	2.1
3	B	1.1
4	C	1.2
5	A	1.2
6	A	1.2
7	C	2.3
8	D	2.7
9	D	1.2
10	C	2.1
11	D	1.1
12	C	2.1
13	D	1.1
14	B	1.2
15	A	1.2
16	B	2.7
17	D	1.1
18	C	2.1
19	C	2.6
20	B	2.7

Section B

Question			Answer	Mark	AO	Guidance
21	(a)		dichlorodifluoromethane \checkmark	1	1.2	IGNORE spaces, and other separators
21	(b)	(i)	causes skin cancer/mutations OR damages crops \checkmark	1	1.1	ALLOW eye damage NOT eye problems
21	(b)	(ii)	It causes photochemical smog \checkmark	1	1.1	ALLOW toxic/poisonous/respiratory/breathing problems OR damage to plants/rubber
21	(b)	(iii)	Bonds vibrate (more) \checkmark	1	1.1	ALLOW They vibrate (more) NOT Atoms vibrate (more) IGNORE reference to collisions
21	(c)	(i)	$\mathrm{ClO}+\mathrm{O} \rightarrow \mathrm{Cl}+\mathrm{O}_{2} \checkmark$	1	1.2	
	(c)	(ii)	$\mathrm{Cl}+\mathrm{Cl} \rightarrow \mathrm{Cl}_{2} \mathrm{OR} 2 \mathrm{Cl} \rightarrow \mathrm{Cl}_{2} \mathrm{OR} 2 \mathrm{ClO} \rightarrow \mathrm{Cl}_{2}+\mathrm{O}_{2} \checkmark$	1	2.1	
21	(c)	(iii)	Both 'propagation' \checkmark	1	1.1	
21	(d)	(i)	AND homolytic (fission) \checkmark	1	1.2	NB Half arrows
21	(d)	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=3.46 \times 10^{-5}(\mathrm{~cm})$ award 4 marks Use of $v=E / h$ or implied by correct evaluation step(s) \checkmark $v=346000 / 6.63 \times 10^{-34} \times 6.02 \times 10^{23}$ (or correct evaluation 8.67×10^{14}) \checkmark $\begin{aligned} & \lambda=3.00 \times 10^{8} / 8.67 \times 10^{14}\left(=3.48 \times 10^{-7} \mathrm{~m}\right)^{\checkmark} \\ & =3.46 \times 10^{-5}(\mathrm{~cm}) \checkmark \end{aligned}$	4	2.2	ALLOW 2 or more sf. ALLOW ecf
	(e)	(i)	molecule/negatively charged ion with a (lone) pair of electrons which it donates(AW) to a (positively charged) atom (to form a covalent bond).	1	1.1	

Question			Answer	Mark	AO	Guidance
22	(a)		6 protons; 7 neutrons \checkmark	1	1.2	
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 12.01 award 2 marks $(98.9 \times 12)+(1.1 \times 13) \checkmark$ divide by 100 and answer to $2 \mathrm{dp}(12.01) \checkmark$	2	2.2	ALLOW ECF
	(b)	(ii)	chance of $2{ }^{13} \mathrm{C}$ small (AW) \checkmark	1	3.2	
	(c)		$M_{r}=60\left(\right.$ from M^{+}peak in MS) \checkmark $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O} / \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH} \checkmark$ $\mathrm{CH}_{2} \mathrm{OH}$ only found in the primary isomer $\mathrm{OR} \mathrm{CH} \mathrm{C}_{2} \mathrm{OH}$ means OH at end (AW) \checkmark	4	3.1 3.2 3.1 3.2	ALLOW "60-31=29; which can only be $\mathrm{CH}_{3} \mathrm{CH}_{2}$ "

Question			Answer	Mark	AO	Guidance
23	(a)		(Otherwise) they react \checkmark	1	3.3	CON reactions with other substances
23	(b)	(i)	Na^{+} AND its oxidation number goes down/goes from +1 to zero OR it gains electrons \checkmark	1	2.1	ALLOW 'sodium ion' NOT 'sodium'
23	(b)	(ii)	$\begin{aligned} & 2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-} \\ & \mathrm{OR} 2 \mathrm{Cl}-2 \mathrm{e}^{-} \rightarrow \mathrm{Cl}_{2} \checkmark \end{aligned}$	1	2.4	ALLOW equation halved ALLOW 'e' without minus
23	(b)	(iii)	breathing apparatus (AW) \checkmark	1	1.1	ALLOW use in a fume cupboard ALLOW well ventilated room NOT face masks
23	(b)	(iv)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=1.4 \times 10^{5}\left(\mathrm{~m}^{3}\right)$ award 5 marks $\begin{aligned} & (\text { moles } \mathrm{Na}=) 1 \times 10^{6} / 23(=43478) \checkmark \\ & \text { moles } \mathrm{Cl}_{2}=\text { half } \mathrm{Na}(21739) \\ & \text { Rearrangement } \mathrm{V}=\mathrm{nRT} / \mathrm{P} \checkmark \\ & \text { substitute values } \mathrm{V}(=21739 \times 8.314 \times 873 / 1100) \\ & =1.43 \ldots \times 10^{5}\left(\mathrm{~m}^{3}\right)^{\checkmark} \end{aligned}$ 2sf and standard form \checkmark	5	2.8	ALLOW ecf Earlier points can be scored by implication in later ones, eg MP1 and MP2 from 21.74 in MP4; MP3 from correct expression in MP4 etc Award last MP for any number to two sf and standard form resulting from a shown calculation.
23	(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1.1 or 1.07 award 2 marks 33/58.5 OR 0.56(4) (mole Na) AND 67/111(.1)OR 0.60(3)(mole Ca) \checkmark ratio $(=0.60(3) / 0.56(4))=1.1 / 1.07 \checkmark$	2	2.6	ALLOW ecf
23	(d)		$\mathrm{Na}-$ sodium ions/(1)+ ions \checkmark	5	1.2	ALLOW labelled diagrams for all marks

Question			Answer	Mark	AO	Guidance
			delocalised electrons (AW) \checkmark $\mathrm{NaCl}-\mathrm{Na}^{+}$and Cl^{-}-ions \checkmark 'lattice' or one structure point (eg 'alternating') \downarrow Electrostatic forces (between oppositely charged ions) \checkmark			ALLOW opposite charges of ions attract
23	(e)	(i)	(colourless/pale green to) brown/orange/yellow \checkmark $2 \mathrm{Nal}+\mathrm{Cl}_{2}--->2 \mathrm{NaCl}+\mathrm{I}_{2} \checkmark$	2	2.5	ALLOW these colours alone or in any combination but no others. ALLOW ionic equation IGNORE state symbols
23	(e)	(ii)	EITHER add organic solvent - purple colour OR heat solution - purple vapour \checkmark	1	3.4	

| Question | | Answer | Mark | AO | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 4}$ | (d) | Heterogeneous AND catalyst and reactants in different states \checkmark | $\mathbf{1}$ | $\mathbf{1 . 1}$ | |

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

