Pearson Edexcel

Mark Scheme (Results)

October 2020

Pearson Edexcel GCE
In Chemistry (9CH0)
Paper 3: General and Practical Principles in
Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020
Publications Code 9CHO_03_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer		Additional Guidance	Mark
1(a)	An answer that makes reference to: - addition of (dilute/ strong) name/ formula of acid - effervescence/ bubbling/ fizzing	(1) (1)	Allow weak acids If formula given then must be correct Allow Gas given off which turns limewater cloudy Do not award just 'gas/ CO_{2} given off' Do not award incorrect observations such as precipitate forming due to addition of acid M2 dependent on M1 or ' near miss'	(2)

Question Number	Answer		Additional Guidance	Mark
1(b)	An answer that makes reference to: - addition of barium chloride/ nitrate (solution) - white precipitate forms	(1) (1)	Accept formulae $\mathrm{BaCl}_{2} / \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ Ignore addition of acids such as HCl or HNO_{3} but do not award M 1 if addition of sulfuric acid Allow white solid If ppt identified then must be correct M2 dependent on M1 or ' near miss'	(2)

Question Number	Answer	Additional Guidance	Mark
2(a)(i)	An answer that makes reference to:		
- (potassium ions) lilac			
and			
(strontium ions) crimson / red	Allow scarlet lgnore'shades' except Do not award 'brick red' / 'orange-red'		

$\begin{array}{l}\text { Question } \\ \text { Number }\end{array}$	Answer	$\begin{array}{c}\text { Additional Guidance }\end{array}$		
2(a)(ii)	$\begin{array}{c}\text { An answer that makes reference to: } \\ \text { - the crimson/ red colour will mask/ hide/ obscure the (lighter) } \\ \text { lilac colour }\end{array}$	$\begin{array}{l}\text { (1) } \\ \text { Allow 'one colour will hide the other' } \\ \text { Allow only one colour seen } \\ \text { Allow difficult to distinguish the two } \\ \text { colours }\end{array}$		
Allow TE from colours in (a)(i)			$\}$	Do not award colour from chloride ions
:---				
Do not award idea of new colour resulting				
from both				
Ignore reference to impurities				

Question Number	Answer	Additional Guidance	Mark
2(b)(i)	An answer that makes reference to: - nichrome produces no colour (when heated in the flame test) or iron can produce a colour/ sparks - nichrome is inert/ stable to heat/ unreactive or iron reacts with oxygen/ air and or hydrochloric acid	Allow does not change the flame colour Ignore references to melting/ cost Ignore reference to nichrome not being a transition element	(2)

Question Number	Answer	Additional Guidance		
2(b)(ii)	An answer that makes reference to:			
• (the wire is heated) to remove the residue of any previous				
sample being tested			\quad	Allow 'to clean the wire'
:---				
Ignore 'to sterilise/ sanitise/ disinfect the				
wire'				

Question Number	Answer	Additional Guidance	Mark
2(b)(iii)	An answer that makes reference to: - the acid can become contaminated with residue from previous tests (which can give incorrect results)		(1)

Question Number	Answer	Additional Guidance
2(b)(iv)	An answer that makes reference to:	Mark
(concentrated hydrochloric acid) forms volatile chlorides	Allow (the wire is moistened) to enable some of the solid metal salt to become attached/stick to the wire (and then tested in the Bunsen flame)	
Do not award reference to bonding or		
reacting or adsorb or absorb with the		
wire		

Question Number	Answer		Additional Guidance	Mark
2(c)	An explanation that makes reference to: - electrons are excited/ promoted (by heat to higher energy levels/ orbitals) - electrons fall from the excited state (to their ground state/ to lower energy levels) - electrons release energy/ photons as (visible) light/ in visible region	(1) (1) (1)	Lack of reference to 'electrons' results in a maximum of (2) for an otherwise correct answer Allow raised/ jump/ moved up for 'excited' Allow return/ drop/ de-excite for 'fall' Allow Wavelength/ frequency/ radiation for 'energy' Do not award reflected for 'release' Do not award colour for 'energy'	(3)

(Total Question $2=10$ marks)

Question Number	Answer	Additional Guidance	(2)
3(a)(i)	A description that makes reference to two of the following: - rinse the glass rod (into the beaker) or rinse beaker (several times) or rinse the funnel	(1)	(1)

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :---: |
| 3(a)(ii) | An answer that makes reference to:
 - removal of the excess solution will remove some of the
 dissolved sodium hydroxide (so that the exact concentration
 will be unknown)
 or
 the concentration won't be known because the total volume
 will be more than $250 \mathrm{~cm}^{3}$ | Allow 'not just removing deionised
 water' |

Question Number	Answer		Additional Guidance	Mark
3(b)(i)	An answer that makes reference to any two of the following: - the tip of the burette must be filled with solution - remove the funnel - ensure the burette is held vertical - eyes are level with the bottom of the meniscus	(1) (1) (1) (1)	Allow 'jet space’ for tip Allow just 'remove air bubbles' Allow 'upright' for vertical Allow 'take readings at eye-level' Allow 'read from the bottom of the meniscus' Ignore reference to clamping and use of stand	(2)

| Question
 Number | Answer | Additional Guidance |
| :--- | :---: | :---: | :---: |
| $\mathbf{3 (b) (i i)}$ | An answer that makes reference to
 e the titre will be larger because
 either
 there is water left in the burette
 or
 the sodium hydroxide solution will be diluted/lower | Allow
 the titre will be larger because the
 burette should have been rinsed with
 sodium hydroxide |

Question Number	Answer	Additional Guidance	Mark
3(c)(i)	An assessment that includes - (ML) the vertical part of the graph is at $\rightarrow 7-10 /$ the mid-point is at 8.5-8.8 - (MR) the mid-point of the colour change of methyl red is 5.1 - (MB) pH range of methyl red does not lie (completely) within the vertical range of the pH curve (so it is not suitable) - (M4) the colour change will be complete before the equivalence point is reached	Allow 'equivalence point/ end-point' for 'the vertical part of the graph/ the mid-point' Allow methyl red changes colour in the range/ has a pH range $4.2-6.3 / \mathrm{pK}_{\text {in }} 5.1$ Allow, after stating M1 and M2, 'this means that methyl red is unsuitable' Allow end-point/ neutralisation point for equivalence point Do not award colour change to red Ignore references to choice of other indicators	(4)

Question Number	Answer	Additional Guidance			Mark
3(c)(ii)	An answer that includes - two ticks and two crosses as shown	Indicator	pH range	$\begin{aligned} & \text { Tick } \\ & \text { or } \\ & \text { Cross } \end{aligned}$	(1)
		Bromocresol purple	$5.2-6.8$	x	
		Thymol blue	8.0-9.6	\checkmark	
		Thymolphthalein	8.3-10.6	\checkmark	
		Alizarin yellow R	10.1-13.0	x	

Question Number	Answer	Additional Guidance					Mark
3(d)(i)	- completed table	Exemplar table					(1)
		Titration number	1	2	3	4	
		Final burette reading / cm^{3}	13.00	25.50	37.90	50.00	
		Initial burette reading / cm^{3}	0.25	13.00	25.50	37.90	
		Titre / cm^{3}	12.75	12.50	12.40	12.10	
		Concordant titres (\checkmark)		\checkmark	\checkmark		
		COMMENT Allow 12.5/ 12.4 / 12.1 Do not award additional ticks					

| Question
 Number | Answer | Additional Guidance |
| :--- | :---: | :---: | :---: |
| 3(d)(ii) | \bullet calculation of percentage measurement uncertainty | Example of calculation
 $(\%=(0.05 \times 4) \div 12.40 \times 100)$
 $=1.6 \% 1.61 \% / 2 \%$
 Ignore SF
 (1) |

Question Number	Answer	Additional Guidance	Mark
3(e)	- (ML) calculation of number of moles of NaOH weighed out - (MR) concentration of NaOH solution - (MB) number of moles of NaOH in titre - (M4) molar concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ solution - (MБ) concentration in $\mathrm{g} \mathrm{dm}^{-3}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ solution to $2 / 3 \mathrm{SF}$ (1)	Example of calculation $\begin{aligned} & \mathrm{n}(\mathrm{NaOH})=3.80 \div 40=0.095 / 9.5 \times 10^{-2}(\mathrm{~mol}) \\ & \begin{aligned} {[\mathrm{NaOH}]=} & =0.095 \div 0.250=0.38(\mathrm{~mol} \mathrm{dm} \end{aligned} \\ & \begin{aligned} \mathrm{n}(\mathrm{NaOH}) & =0.38 \times 0.0119 \\ & =0.004522 / 4.522 \times 10^{-3}(\mathrm{~mol}) \end{aligned} \end{aligned}$ $\begin{align*} {\left[\mathrm{CH}_{3} \mathrm{COOH}\right] } & =4.522 \times 10^{-3} \div 0.025 \tag{1}\\ & =0.18088\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{align*}$ $\begin{aligned} {\left[\mathrm{CH}_{3} \mathrm{COOH}\right] } & =0.18088 \times 60 \\ & =10.8528\left(\mathrm{~g} \mathrm{dm}^{-3}\right) \\ & =10.9 / 11\left(\mathrm{~g} \mathrm{dm}^{-3}\right) \end{aligned}$ Do not award $10.90\left(\mathrm{~g} \mathrm{dm}^{-3}\right)$ Correct answer without working scores (5) Accept steps in a different order, e.g. moles x 60 before dividing by 0.025 TE throughout Penalise incorrect units in M5 only	(5)

Question Number	Answer		Additional Guidance	Mark
4(a)	- molar mass of hydrated copper(II) sulfate - mass of 0.0250 mol hydrated copper(II) sulfate	(1) (1)	Example of calculation $\overline{\mathrm{M}_{\mathrm{r}}\left(\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}\right)=249.6}\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ $\mathrm{m}\left(\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}\right)=6.24(\mathrm{~g})$ Answer to 2 / 3SF Correct answer with no working scores (2) TE from incorrect M_{r}	(2)
Question Number	Answer		Additional Guidance	Mark
4(b)	- evaluation of Q - rearrangement to give ΔT - Answer to 1 or 2SF and temperature change	(1) (1) (1)	Example of calculation $\begin{aligned} & \mathrm{Q}=(\Delta \mathrm{H} \times \mathrm{n})=18.2 \times 0.025=0.455(\mathrm{~kJ}) \text { or } 455 \mathrm{~J} \\ & \Delta \mathrm{~T}=\mathrm{Q} \div(\mathrm{m} \times \mathrm{c}) \\ & =455 \div(45.00 \times 4.18) \\ & =2.4189 . .\left(^{\circ} \mathrm{C}\right) \end{aligned}$ $\Delta \mathrm{T}=2 / 2.4^{\circ} \mathrm{C} / \mathrm{K}$ and decrease Allow -2/2.4 ${ }^{\circ} \mathrm{C} / \mathrm{K}$ Correct final answer without working scores (3) TE throughout	(3)

Question Number	Answer	Additional Guidance	Mark
4(c)(ii)	- Use of Hess's law to calculate $\Delta_{r} H$ shown on the diagram	Value from diagram $=-102.7\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Allow $\Delta_{\mathrm{r}} \mathrm{H}=\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{1}=-84.5-(+18.2)=-102.7\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Allow -103 (kJ mol ${ }^{-1}$) Do not award if no working shown on the diagram	(1)

Question Number	Answer	Additional Guidance	Mark
4(d)	An answer that makes reference to - Cannot react exactly 5 mol of water with 1 mol of anhydrous copper(II) sulfate	Cannot measure the temperature (change) for a solid Description that states more (than 5) water molecules will attach to some CuSO_{4} while less (than 5) water molecules will attach to other CuSO_{4} ACCEPT reasonable ideas such as some water may evaporate (due to exothermic reaction) Ignore heat loss to surroundings if given as an alternative reason Do not award heat is needed to start the reaction	(1)

Question Number	Answer		Additional Guidance	Mark
5(a)	- formula of sodium benzoate - remainder of equation	(1) (1)	Example of equation $+\mathrm{NaHCO}_{3} \rightarrow$ $+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ Accept $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$ and/ or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)}$ Allow omission of charges Allow Kekulé structures Do not award O-Na Ignore state symbols even if incorrect Standal one mark	(2)

Question Number	Answer	Additional Guidance	Mark
5(b)	An answer that makes reference to:	Allow	
	• invert the funnel and then open the tap	Just removal of stopper/ bung/lid/top	
Ignore shaking			

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :---: |
| 5(c) | An answer that makes reference to | (1) |
| | \bullet (Water is) more dense (than ether/ than the organic layer) | Accept reverse argument |
| | | Ignore references to immiscibility
 Do not award references to water being
 insoluble |

| Question
 Number | Answer | Additional Guidance |
| :--- | :---: | :---: | :---: |
| 5(d) | An answer that makes reference to: | |
| -some sodium benzoate has dissolved in the ether (instead
 of the aqueous sodium carbonate) | (1)
 Ignore to increase the yield of sodium
 benzoate
 Ignore to remove the product from the
 ether | |

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :---: |
| 5(e) | An explanation that makes reference to:
 -The benzoate ion is protonated by the
 hydrochloric acid (1)
 -benzoic acid is less soluble (in water) than the
 sodium salt Allow $\mathrm{HCl} /$ acid reacts to form benzoic acid | Allow benzoic acid is insoluble |

Question Number	Answer		Additional Guidance	Mark
5(f)	A labelled diagram that includes - Buchner/ side-armed flask connected to vacuum/ pump/ water aspirator - funnel with flat filter paper	(1) (1)	Example of diagram Do not award fluted filter paper Do not award water flow into the flask	(2)

Question Number	Answer		Additional Guidance	Mark
5(g)	Method 1 - (MI) mass of benzoic acid in $50 \mathrm{~cm}^{3}$ - (MR) no. of moles of benzoic acid in $50 \mathrm{~cm}^{3}$ OR Method 2 - (M1) moles of benzoic acid in $1000 \mathrm{~cm}^{3}$ - (NR) no. of moles of benzoic acid in $50 \mathrm{~cm}^{3}$ then - (MB) evaluation of the number of molecules of benzoic acid in $50 \mathrm{~cm}^{3}$	(1) (1) (1) (1) (1)	$\begin{aligned} & \text { Example of calculation } \\ & \mathrm{m}=(1.70 \times 0.05 \Rightarrow 0.0850(\mathrm{~g}) \\ & \mathrm{n}=\left(0.0850 \div 122 \Rightarrow 6.967 \ldots \times 10^{-4}(\mathrm{~mol})\right. \\ & \mathrm{n}=(1.70 \div 122 \Rightarrow 0.01393 \ldots(\mathrm{~mol}) \\ & \mathrm{n}=\left(0.01393 \ldots \times 0.05 \Rightarrow 6.967 \ldots \times 10^{-4}(\mathrm{~mol})\right. \\ & \\ & \mathrm{N}=\left(6.967 \ldots \times 10^{-4} \times 6.02 \times 10^{23} \Rightarrow\right. \\ & =4.19 \times 10^{20} / 4.2 \times 10^{20} \\ & \text { Ignore sf except } 1 \mathrm{sf} \\ & \text { Penalise excessive }(6+) \mathrm{SF} \end{aligned}$ Allow use of 6.0×10^{23} to give 4.18×10^{20} for (3) Correct final answer without working scores (3) TE throughout	(3)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{5 (h)}$	A comparison that makes reference to		
	• (melting temperature) is a (wide) range/ not sharp (1)	Ignore just lower for M1	
• (it is lower) because impurities are present	(1)	Allow water/ phenol is present Allow 'it is not pure'	

Question Number	Answer		Additional Guidance	Mark
6(a)	- correct formula (phenol) - balanced equation	(1) (1)	Example of equation $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+7 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ Allow $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$ Do not award [O] Ignore state symbols even if incorrect	(2)

Question Number	Answer	Additional Guidance	Mark
6(b)(i)	- mass of carbon in both substances - molar masses of both substances - calculation of percentages by mass of carbon (1)	Example of calculation $(12 \times 7 \Rightarrow 84$ Phenylmethanol 108 and Benzoic acid 122 Phenylmethanol $(84 \div 108) \times 100=$ 78% 77.8\% $77.78 \% / 77.7 \%$ Benzoic acid $(84 \div 122) \times 100=$ 68.85\% 68.9\% 69\% Ignore sf except 1 Allow TE on incorrect M_{r} values Allow (2) for 11.1% and 9.8% calculated using 12 not 84 Allow 'rescue' (1) for one substance completely correct	(3)

$\begin{array}{c}\text { Question } \\ \text { Number }\end{array}$	Answer	Additional Guidance	
6(b)(ii)	A description that makes reference to:	$\begin{array}{l}\text { Mark } \\ \\ \end{array}$	$\begin{array}{l}\text { Allow } \\ \text { Black fumes/ soot/ (yellow) smoky flame / } \\ \text { grey smoke }\end{array}$
	black smoke	Ignore carbon particulates	
Do not award carbon monoxide/ yellow flame			

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :---: |
| 6(b)(iii) | An answer that makes reference to | Allow
 Cycloalkenes/ cycloalkanes/ alkynes/
 carbon-carbon double bonds |
| | \bullet Alkenes | Ignore
 Ethene/ named alkenes/ named alkynes |
| Do not award benzene/ arenes | | |

Question Number	Answer	Additional Guidance	Mark
6(b)(iv)	An explanation that makes reference to - (window) above the safety line means the exhaust system is not strong enough to draw in the fumes - so the toxic fumes will escape (into the laboratory)	Allow reverse argument Allow reference to exhaust/fan not able to prevent gas escaping Allow poisonous/ harmful/ irritant/ carbon monoxide/ soot for 'toxic fumes' Ignore reference to protection from splashing etc	(2)

Question Number	Answer	Additional Guidance	Mark
6(c)(i)	An answer that makes reference to - (MI) (similarity) all have arene C-H absorptions Either $3030\left(\mathrm{~cm}^{-1}\right)$ or $\begin{equation*} 750 \text { and/ or } 700\left(\mathrm{~cm}^{-1}\right) \tag{1} \end{equation*}$ - (MR) only phenol and phenylmethanol have $\mathrm{O}-\mathrm{H}$ 3750-3200 (cm ${ }^{-1}$) - (MB) only benzoic acid has O-H 3300-2500 (cm^{-1}) - (M4) only benzoic acid has $\mathrm{C}=01700-1680\left(\mathrm{~cm}^{-1}\right)$ - (M5) only phenylmethanol has alkane C-H absorptions either $2962-2853\left(\mathrm{~cm}^{-1}\right)$ or $\begin{equation*} 1485-1365\left(\mathrm{~cm}^{-1}\right) \tag{1} \end{equation*}$	Bond and wavenumber ranges necessary for each mark Do not award 880/830/ $780\left(\mathrm{~cm}^{-1}\right)$ Do not award -OH / C-OH by penalising once only in M2 and M3 All 5 correct bonds with no wavenumber ranges scores (3) 4 correct etc scores (2) and 3 correct etc scores (1) All 5 correct wavenumber ranges with no bonds or incorrect bonds scores (3) 4 correct etc scores (2) and 3 correct etc scores (1) Penalise any additional peaks once only Ignore references to different fingerprint regions	(5)

Question Number	Answer	Additional Guidance	Mark
6(c)(ii)	An answer that makes reference to - five peaks (in the ${ }^{13} \mathrm{C}$ NMR spectrum) - (four) aromatic peaks within the chemical shift range of 165-105 (ppm) - (one) peak (for the C-OH) within the chemical shift range of 75 - 55 (ppm)	Allow any range within the stated ranges Penalise single values as opposed to ranges once only Accept annotations on diagram Penalise additional peaks once only when three or more types of peak are stated	(3)

Question Number	Answer		Additional Guidance	Mark
6(c)(iii)	An answer that makes reference to - suitable formula of fragment ion - matching m / z value	(1) (1)	Example of a suitable formula $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{+}$or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$ Do not award $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$or $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}$ $\mathrm{m} / \mathrm{z}=121 \text { or } 105$ Allow $\mathrm{COOH}^{+}(1)$ Do not award bond to the fragment, e.g. $-\mathrm{COOH}^{+}$ $m / z=45$ No TE on incorrect fragment ions such as $\mathrm{CH}_{3}{ }^{+}$	(2)

Question Number	Answer	Additional Guidance	Mark
8(a)	A description that makes reference to - green ppt. - ppt dissolves (in excess NaOH) to give a green solution	Accept ‘green solid' Allow ' grey-green ppt Do not award blue-green Ignore shades M2 dependent upon M1 or near-miss	(2)

Question Number	Answer		Additional Guidance	Mark
8(b)(i)	- four correct species - balancing and the correct number of electrons	(1) (1)	An example of equation $\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}+2 \mathrm{OH}^{-} \rightarrow \mathrm{CrO}_{4}^{2-}+4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{e}^{-}$ Accept multiples	(2)

| Question
 Number | Answer | Additional Guidance |
| :--- | :---: | :---: | :---: |
| $\mathbf{8 (b) (i i)}$ | \bullet equation | An example of equation |
| | | $2 \mathrm{CrO}_{4}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$ |
| Accept $\rightleftharpoons /$ multiples | | |

Question Number	Answer		Additional Guidance	Mark
8(b)(iii)	- oxidation half equation - reduction half equation - overall equation	(1) (1) (1)	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}^{+}+\mathrm{O}_{2}+2 \mathrm{e}^{-} \\ & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+8 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{O}_{2} \end{aligned}$ for M 3 do not award if $\mathrm{H}^{+} / \mathrm{e}^{-}$left on both sides Accept multiples Allow \rightleftharpoons Ignore state symbols even if incorrect Oxidation and reduction half equations scores (2) if not identified but in correct order Award (1) only for M1 and M2 if half equations are not in correct order No TE on incorrect half equations	(3)

Question Number	Answer	Additional Guidance	Mark
8(c)	A diagram that includes - (ML) (high resistance) voltmeter/V - (MR) salt bridge to complete circuit - (MB) filter paper soaked in (saturated) potassium nitrate/ KNO_{3} solution (M4) zinc electrode of zinc metal and suitable zinc salt - (M5) platinum (black) electrode - (M6) suitable chromium salts - (MV) all solutions to be $1 \mathrm{~mol} \mathrm{dm}^{-3}$ (wrt ions)	Example of diagram Salt bridge must dip into the solutions Allow sodium chloride/ potassium chloride for potassium nitrate e.g. ZnSO_{4} e.g. $\mathrm{CrCl}_{3} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ if $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is used then M7 can only be awarded if its concentration is $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ Allow electrodes drawn the other way round Ignore temperature is 298 K Penalise use of just names once only	(7)

(Total Question $8=15$ marks)

Question Number	Answer		Additional Guidance	Mark
9(a)	An answer that makes reference to - (similarity) both are reduction reactions - (difference 1) reagents for preparation of phenylamine are tin and (conc.) hydrochloric acid - (difference 2) reagents for preparation of butylamine are either Hydrogen gas and nickel catalyst or lithium tetrahydridoaluminate(III) and (dry) ether	(1) (1) (1)	Ignore both require hydrogen Allow Iron for tin Do not award dilute hydrochloric acid/ sulfuric acid Lithium aluminium hydride / Lithal / LiAlH_{4}	(3)

Question Number	Answer	Additional Guidance	Mark
9(b)	An answer that makes reference to: - (similarity) both are basic because they have a lone pair of electrons on the nitrogen atom which accepts a proton - (difference 1)in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ the lone pair of electrons of the nitrogen atom becomes incorporated with the delocalised ring of electrons and so is less able to accept a proton hence a weaker base - (difference 2) the alkyl group/ $\mathrm{C}_{4} \mathrm{H}_{9}$ is electron-releasing / positively inductive and means the lone pair of electrons of the nitrogen atom are more able to accept a proton hence a stronger base(1)	Diagrams can be used to score Comparison of basicity/ nitrogen's lone pair of electrons/ proton acceptance only need to be mentioned once.	(3)

Question Number	Answer	Additional Guidance	Mark
9(c)	- equation (1) - name (1)	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCl}+\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NH}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CONHC}_{5} \mathrm{H}_{11}+\mathrm{HCl}$ or Allow skeletal/ structural/ combination of formulae Allow $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCl}+2 \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NH}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CONHC}_{5} \mathrm{H}_{11}+\mathrm{HCl}+\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NH}_{3} \mathrm{Cl}$ Do not award molecular formulae N-pentylpropanamide Do not award N-pentylpropylamine	(2)

Question Number	Answer	Additional Guidance	
9(d)	\bullet amine monomer structure or name	$\mathrm{H}_{2}{\mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2} / 1,6 \text {-diaminohexane }}$	Accept any mixture of displayed, structural or skeletal formulae
	Do not award molecular formulae or $\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{12} \mathrm{NH}_{2}$		
		If name and formula given then both must be correct	

Question Number	Answer	Additional Guidance	Mark
10(a)(i)		Example of reaction mechanism	(4)
	- oxygen lone pair and curly arrow to the H^{+} - curly arrow from oxygen lone pair on the ethanol to the carbon of the $\mathrm{C}=\mathrm{O}$ - curly arrow from C-O bond to oxygen of water molecule (1) - curly arrow from O-H bond back to the O^{+}oxygen	Penalise additional curly arrows for each marking point Penalise missing lone pair on oxygen once only in M1 and M2	

Question Number	Answer	Additional Guidance	Mark
10(a)(ii)	- correct oxygen identified - the single bond C - O in the carboxylic acid breaks rather than the one in ethanol or the oxygen in ethanol acts as the nucleophile (to attack the carbon of the carboxylic acid group and so ends up in the ester)	 Allow 'loss of OH from the carboxylic acid'	(2)

Question Number	Answer	Additional Guidance	Mark
10(a)(iii)	- (MI) calculation of ΔG - (MR) correct equation - (MB) rearrangement of equation - (M4) calculation of $\Delta \mathrm{S}_{\text {system }}$ - (MБ) rearrangement of equation so $S_{\text {(ethyl ethanoate) }}=$ - (M6) calculation of $S_{\text {(ethyl ethanoate) }}$ with sign and units	Example of calculation $\begin{align*} \Delta G & =-R T \ln K=-8.31 \times 298 \times \ln 4.0 \tag{1}\\ & =-3433\left(\mathrm{~J} \mathrm{~mol}^{-1}\right) \end{align*}$ $\begin{equation*} \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}_{\text {system }} \tag{1} \end{equation*}$ $\Delta \mathrm{S}_{\text {system }}=(\Delta \mathrm{H}-\Delta \mathrm{G}) \div \mathrm{T}$ $\begin{align*} & \Delta \mathrm{S}_{\text {system }}=\left(-6.0 \times 10^{3}-(-3433)\right) \div 298 \tag{1}\\ & \quad=-8.614 \ldots\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \end{align*}$ $\left(\Delta S_{\text {system }}=\sum S_{\text {(products) }}-\sum S_{\text {(reactants) }}\right)$ $S_{\text {(ethyl ethanoate) }}=\Delta \mathrm{S}+\sum \mathrm{S}_{\text {(reactants) }}-\mathrm{S}($ water $)$ $\begin{aligned} S_{\text {(ethyl ethanoate) }} & =(-8.614+(159.8+160.7)-69.9) \\ & =+242 / 240 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$ Ignore SF except 1SF Correct final answer without working scores (6) TE throughout	(6)

Question Number	Answer		Additional Guidance	Mark
10(b)	A comparison that makes reference to: (with ethanoyl chloride) - the reaction is irreversible compared to reversible - hydrogen chloride is the by-product rather than water - the reaction is very fast/ occurs at room temperature so an acid catalyst is not needed	(1) (1) (1)	Accept reverse arguments Allow steamy fumes for ' HCl '	(3)

(Total Question $10=15$ marks)

